메뉴 건너뛰기




Volumn 7, Issue , 2016, Pages 8-12

Searching for the physiological role of glucose-dependent insulinotropic polypeptide

Author keywords

Bone remodeling; Glucagon; Lipid metabolism

Indexed keywords

GASTRIC INHIBITORY POLYPEPTIDE; GLUCAGON; GLUCAGON LIKE PEPTIDE 1; GLUCAGON LIKE PEPTIDE 2; GLUCOSE; GASTRIC INHIBITORY POLYPEPTIDE RECEPTOR; HORMONE RECEPTOR;

EID: 84963538091     PISSN: 20401116     EISSN: 20401124     Source Type: Journal    
DOI: 10.1111/jdi.12488     Document Type: Article
Times cited : (36)

References (39)
  • 1
    • 0013411020 scopus 로고
    • Gastric inhibitory polypeptide
    • III-88
    • Brown JC. Gastric inhibitory polypeptide. Monogr Endocrinol 1982; 24: III-XI, 1-88:III-88.
    • (1982) Monogr Endocrinol , vol.24
    • Brown, J.C.1
  • 2
    • 0020754959 scopus 로고
    • Effect of vagus, gastric inhibitory polypeptide, and HCl on gastrin and somatostatin release from perfused pig antrum
    • Holst JJ, Jensen SL, Knuhtsen S, et al. Effect of vagus, gastric inhibitory polypeptide, and HCl on gastrin and somatostatin release from perfused pig antrum. Am J Physiol 1983; 244: G515-G522.
    • (1983) Am J Physiol , vol.244 , pp. G515-G522
    • Holst, J.J.1    Jensen, S.L.2    Knuhtsen, S.3
  • 3
    • 0018906618 scopus 로고
    • Effect of gastric inhibitory polypeptide on pentagastrin-stimulated acid secretion in man
    • Maxwell V, Shulkes A, Brown JC, et al. Effect of gastric inhibitory polypeptide on pentagastrin-stimulated acid secretion in man. Dig Dis Sci 1980; 25: 113-116.
    • (1980) Dig Dis Sci , vol.25 , pp. 113-116
    • Maxwell, V.1    Shulkes, A.2    Brown, J.C.3
  • 4
    • 0015791989 scopus 로고
    • Stimulation of insulin secretion by gastric inhibitory polypeptide in man
    • Dupre J, Ross SA, Watson D, et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826-828.
    • (1973) J Clin Endocrinol Metab , vol.37 , pp. 826-828
    • Dupre, J.1    Ross, S.A.2    Watson, D.3
  • 5
    • 0023955686 scopus 로고
    • Immunoreactive gastric inhibitory polypeptide
    • Krarup T. Immunoreactive gastric inhibitory polypeptide. Endocr Rev 1988; 9: 122-134.
    • (1988) Endocr Rev , vol.9 , pp. 122-134
    • Krarup, T.1
  • 6
    • 0018185347 scopus 로고
    • Oral glucose augmentation of insulin secretion: interactions of gastric inhibitory polypeptide with ambient glucose and insuln levels
    • Andersen DK, Elahi D, Brown JC, et al. Oral glucose augmentation of insulin secretion: interactions of gastric inhibitory polypeptide with ambient glucose and insuln levels. J Clin Invest 1978; 49: 152-161.
    • (1978) J Clin Invest , vol.49 , pp. 152-161
    • Andersen, D.K.1    Elahi, D.2    Brown, J.C.3
  • 7
    • 0038121744 scopus 로고    scopus 로고
    • Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects
    • Vilsboll T, Krarup T, Madsbad S, et al. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 2003; 114: 115-121.
    • (2003) Regul Pept , vol.114 , pp. 115-121
    • Vilsboll, T.1    Krarup, T.2    Madsbad, S.3
  • 8
    • 41149088656 scopus 로고    scopus 로고
    • Near normalisation of blood glucose improves the potentiating effect of GLP-1 on glucose-induced insulin secretion in patients with type 2 diabetes
    • Hojberg PV, Zander M, Vilsboll T, et al. Near normalisation of blood glucose improves the potentiating effect of GLP-1 on glucose-induced insulin secretion in patients with type 2 diabetes. Diabetologia 2008; 51: 632-640.
    • (2008) Diabetologia , vol.51 , pp. 632-640
    • Hojberg, P.V.1    Zander, M.2    Vilsboll, T.3
  • 9
    • 0242383351 scopus 로고    scopus 로고
    • The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype
    • Vilsboll T, Knop FK, Krarup T, et al. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab 2003; 88: 4897-4903.
    • (2003) J Clin Endocrinol Metab , vol.88 , pp. 4897-4903
    • Vilsboll, T.1    Knop, F.K.2    Krarup, T.3
  • 10
    • 82255185915 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans
    • Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 2011; 60: 3103-3109.
    • (2011) Diabetes , vol.60 , pp. 3103-3109
    • Christensen, M.1    Vedtofte, L.2    Holst, J.J.3
  • 11
    • 84958620086 scopus 로고    scopus 로고
    • Enteroendocrine cells: chemosensors in the intestinal epithelium
    • Gribble FM, Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 2016; 78: 277-299.
    • (2016) Annu Rev Physiol , vol.78 , pp. 277-299
    • Gribble, F.M.1    Reimann, F.2
  • 12
    • 84870225450 scopus 로고    scopus 로고
    • A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin
    • Egerod KL, Engelstoft MS, Grunddal KV, et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 2012; 153: 5782-5795.
    • (2012) Endocrinology , vol.153 , pp. 5782-5795
    • Egerod, K.L.1    Engelstoft, M.S.2    Grunddal, K.V.3
  • 13
    • 84923917065 scopus 로고    scopus 로고
    • An analysis of co-secretion and co-expression of gut hormones from male rat proximal and distal small intestine
    • Svendsen B, Pedersen J, Jacob Wewer AN, et al. An analysis of co-secretion and co-expression of gut hormones from male rat proximal and distal small intestine. Endocrinology 2015; 156: 847-857.
    • (2015) Endocrinology , vol.156 , pp. 847-857
    • Svendsen, B.1    Pedersen, J.2    Jacob Wewer, A.N.3
  • 14
    • 84953226258 scopus 로고    scopus 로고
    • GLP1 and GIP cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness
    • Svendsen B, Pais R, Engelstoft MS, et al. GLP1 and GIP cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness. J Endocrinol 2016; 228: 39-48.
    • (2016) J Endocrinol , vol.228 , pp. 39-48
    • Svendsen, B.1    Pais, R.2    Engelstoft, M.S.3
  • 15
    • 33847682160 scopus 로고    scopus 로고
    • Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus
    • Knop FK, Vilsboll T, Madsbad S, et al. Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. Diabetologia 2007; 50: 797-805.
    • (2007) Diabetologia , vol.50 , pp. 797-805
    • Knop, F.K.1    Vilsboll, T.2    Madsbad, S.3
  • 16
    • 79957639726 scopus 로고    scopus 로고
    • The separate and combined impact of the intestinal hormones, GIP, GLP-1 and GLP-2, on glucagon secretion in type 2 diabetes
    • Lund A, Vilsboll T, Bagger JI, et al. The separate and combined impact of the intestinal hormones, GIP, GLP-1 and GLP-2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab 2011; 300: E1038- E1046.
    • (2011) Am J Physiol Endocrinol Metab , vol.300 , pp. E1038- E1046
    • Lund, A.1    Vilsboll, T.2    Bagger, J.I.3
  • 17
    • 85027294571 scopus 로고    scopus 로고
    • Hyperglucagonemia after oral glucose and suppression of glucagon following intravenous glucose in totally pancreatectomized patients
    • Lund A, Bagger JI, Christensen M, et al. Hyperglucagonemia after oral glucose and suppression of glucagon following intravenous glucose in totally pancreatectomized patients. Diabetes 2015; 64(Suppl. 1): A62-A63.
    • (2015) Diabetes , vol.64 , pp. A62-A63
    • Lund, A.1    Bagger, J.I.2    Christensen, M.3
  • 18
    • 84904740548 scopus 로고    scopus 로고
    • Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals
    • Bagger JI, Knop FK, Lund A, et al. Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals. Diabetologia 2014; 57: 1720-1725.
    • (2014) Diabetologia , vol.57 , pp. 1720-1725
    • Bagger, J.I.1    Knop, F.K.2    Lund, A.3
  • 19
    • 84888009377 scopus 로고    scopus 로고
    • Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass
    • Dirksen C, Bojsen-Moller KN, Jorgensen NB, et al. Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass. Diabetologia 2013; 56: 2679-2687.
    • (2013) Diabetologia , vol.56 , pp. 2679-2687
    • Dirksen, C.1    Bojsen-Moller, K.N.2    Jorgensen, N.B.3
  • 20
    • 0033520869 scopus 로고    scopus 로고
    • GIP biology and fat metabolism
    • Yip RG, Wolfe MM. GIP biology and fat metabolism. Life Sci 2000; 66: 91-103.
    • (2000) Life Sci , vol.66 , pp. 91-103
    • Yip, R.G.1    Wolfe, M.M.2
  • 22
    • 0036068322 scopus 로고    scopus 로고
    • Inhibition of gastric inhibitory polypeptide signaling prevents obesity
    • Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8: 738-742.
    • (2002) Nat Med , vol.8 , pp. 738-742
    • Miyawaki, K.1    Yamada, Y.2    Ban, N.3
  • 23
    • 84455173076 scopus 로고    scopus 로고
    • Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain
    • Ugleholdt R, Pedersen J, Bassi MR, et al. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain. J Biol Chem 2011; 286: 44632-44645.
    • (2011) J Biol Chem , vol.286 , pp. 44632-44645
    • Ugleholdt, R.1    Pedersen, J.2    Bassi, M.R.3
  • 24
    • 84871895669 scopus 로고    scopus 로고
    • Glucose-metabolism is altered after loss of L- and alpha-cells, but not influenced by loss of K-cells
    • Pedersen J, Ugleholdt RK, Jorgensen SM, et al. Glucose-metabolism is altered after loss of L- and alpha-cells, but not influenced by loss of K-cells. Am J Physiol Endocrinol Metab 2013; 304: E60-E73.
    • (2013) Am J Physiol Endocrinol Metab , vol.304 , pp. E60-E73
    • Pedersen, J.1    Ugleholdt, R.K.2    Jorgensen, S.M.3
  • 25
    • 77349116803 scopus 로고    scopus 로고
    • On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans
    • Asmar M, Tangaa W, Madsbad S, et al. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans. Am J Physiol Endocrinol Metab 2010; 298: E614-E621.
    • (2010) Am J Physiol Endocrinol Metab , vol.298 , pp. E614-E621
    • Asmar, M.1    Tangaa, W.2    Madsbad, S.3
  • 26
    • 77956371183 scopus 로고    scopus 로고
    • GIP may enhance fatty acid re-esterification in subcutaneous, abdominal adipose tissue in lean humans
    • Asmar M, Simonsen L, Madsbad S, et al. GIP may enhance fatty acid re-esterification in subcutaneous, abdominal adipose tissue in lean humans. Diabetes 2010; 59: 2160-2163.
    • (2010) Diabetes , vol.59 , pp. 2160-2163
    • Asmar, M.1    Simonsen, L.2    Madsbad, S.3
  • 27
    • 84896720860 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects
    • Asmar M, Simonsen L, Arngrim N, et al. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects. Int J Obes (Lond) 2014; 38: 259-265.
    • (2014) Int J Obes (Lond) , vol.38 , pp. 259-265
    • Asmar, M.1    Simonsen, L.2    Arngrim, N.3
  • 28
    • 84959351192 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide (GIP) is associated with lower LDL but unhealthy fat distribution, independent of insulin: the ADDITION-PRO study
    • jc20153133.
    • Moller CL, Vistisen D, Faerch K, et al. Glucose-dependent insulinotropic polypeptide (GIP) is associated with lower LDL but unhealthy fat distribution, independent of insulin: the ADDITION-PRO study. J Clin Endocrinol Metab 2016; 201: 485-493 jc20153133.
    • (2016) J Clin Endocrinol Metab , vol.201 , pp. 485-493
    • Moller, C.L.1    Vistisen, D.2    Faerch, K.3
  • 29
    • 17744374566 scopus 로고    scopus 로고
    • Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors
    • Bollag RJ, Zhong Q, Phillips P, et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 2000; 141: 1228-1235.
    • (2000) Endocrinology , vol.141 , pp. 1228-1235
    • Bollag, R.J.1    Zhong, Q.2    Phillips, P.3
  • 30
    • 33846866509 scopus 로고    scopus 로고
    • Effects of glucose-dependent insulinotropic peptide on osteoclast function
    • Zhong Q, Itokawa T, Sridhar S, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 2007; 292: E543-E548.
    • (2007) Am J Physiol Endocrinol Metab , vol.292 , pp. E543-E548
    • Zhong, Q.1    Itokawa, T.2    Sridhar, S.3
  • 31
    • 28844478542 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover
    • Xie D, Cheng H, Hamrick M, et al. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 2005; 37: 759-769.
    • (2005) Bone , vol.37 , pp. 759-769
    • Xie, D.1    Cheng, H.2    Hamrick, M.3
  • 33
    • 33745658853 scopus 로고    scopus 로고
    • Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion
    • Tsukiyama K, Yamada Y, Yamada C, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 2006; 20: 1644-1651.
    • (2006) Mol Endocrinol , vol.20 , pp. 1644-1651
    • Tsukiyama, K.1    Yamada, Y.2    Yamada, C.3
  • 34
    • 10744224629 scopus 로고    scopus 로고
    • Role of gastrointestinal hormones in postprandial reduction of bone resorption
    • Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 2003; 18: 2180-2189.
    • (2003) J Bone Miner Res , vol.18 , pp. 2180-2189
    • Henriksen, D.B.1    Alexandersen, P.2    Bjarnason, N.H.3
  • 35
    • 84910016626 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans
    • Nissen A, Christensen M, Knop FK, et al. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab 2014; 99: E2325-E2329.
    • (2014) J Clin Endocrinol Metab , vol.99 , pp. E2325-E2329
    • Nissen, A.1    Christensen, M.2    Knop, F.K.3
  • 36
    • 70349279885 scopus 로고    scopus 로고
    • Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD
    • Henriksen DB, Alexandersen P, Hartmann B, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 2009; 45: 833-842.
    • (2009) Bone , vol.45 , pp. 833-842
    • Henriksen, D.B.1    Alexandersen, P.2    Hartmann, B.3
  • 37
    • 0942278946 scopus 로고    scopus 로고
    • Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2
    • Henriksen DB, Alexandersen P, Byrjalsen I, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 2004; 34: 140-147.
    • (2004) Bone , vol.34 , pp. 140-147
    • Henriksen, D.B.1    Alexandersen, P.2    Byrjalsen, I.3
  • 38
    • 84898426818 scopus 로고    scopus 로고
    • A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk
    • Torekov SS, Harslof T, Rejnmark L, et al. A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk. J Clin Endocrinol Metab 2014; 99: E729-E733.
    • (2014) J Clin Endocrinol Metab , vol.99 , pp. E729-E733
    • Torekov, S.S.1    Harslof, T.2    Rejnmark, L.3
  • 39
    • 75749091912 scopus 로고    scopus 로고
    • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
    • Saxena R, Hivert MF, Langenberg C, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 2010; 42: 142-148.
    • (2010) Nat Genet , vol.42 , pp. 142-148
    • Saxena, R.1    Hivert, M.F.2    Langenberg, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.