-
1
-
-
84880083510
-
The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
-
S. Agarwal. The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In SDM, 2011.
-
(2011)
SDM
-
-
Agarwal, S.1
-
2
-
-
84885996388
-
Video in sentences out
-
A. Barbu et al. Video in sentences out. In UAI, 2012.
-
(2012)
UAI
-
-
Barbu, A.1
-
3
-
-
84899732670
-
Minimally needed evidence for complex event recognition in unconstrained videos
-
S. Bhattacharya, F. X. Yu, and S.-F. Chang. Minimally needed evidence for complex event recognition in unconstrained videos. In ICMR, 2014.
-
(2014)
ICMR
-
-
Bhattacharya, S.1
Yu, F.X.2
Chang, S.-F.3
-
4
-
-
84949766814
-
Semantic concept discovery for large-scale zero-shot event detection
-
X. Chang, Y. Yang, A. G. Hauptmann, E. P. Xing, and Y.-L. Yu. Semantic concept discovery for large-scale zero-shot event detection. In IJCAI, 2015.
-
(2015)
IJCAI
-
-
Chang, X.1
Yang, Y.2
Hauptmann, A.G.3
Xing, E.P.4
Yu, Y.-L.5
-
5
-
-
84969822870
-
Complex event detection using semantic saliency and nearly-isotonic SVM
-
X. Chang, Y. Yang, E. P. Xing, and Y.-L. Yu. Complex event detection using semantic saliency and nearly-isotonic SVM. In ICML, 2015.
-
(2015)
ICML
-
-
Chang, X.1
Yang, Y.2
Xing, E.P.3
Yu, Y.-L.4
-
6
-
-
0035273106
-
Atomic decomposition by basis pursuit
-
S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Review, 43(1):129-159, 2001.
-
(2001)
SIAM Review
, vol.43
, Issue.1
, pp. 129-159
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
7
-
-
84887345951
-
A thousand frames in just a few words: Lingual description of videos through latent topics and sparse object stitching
-
P. Das, C. Xu, R. Doell, and J. Corso. A thousand frames in just a few words: Lingual description of videos through latent topics and sparse object stitching. In CVPR, 2013.
-
(2013)
CVPR
-
-
Das, P.1
Xu, C.2
Doell, R.3
Corso, J.4
-
9
-
-
25444458566
-
Parallel support vector machines: The cascade SVM
-
H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik. Parallel support vector machines: The cascade SVM. In NIPS, 2004.
-
(2004)
NIPS
-
-
Graf, H.P.1
Cosatto, E.2
Bottou, L.3
Durdanovic, I.4
Vapnik, V.5
-
10
-
-
70450202741
-
Understanding videos, constructing plots: Learning a visually grounded storyline model from annotated videos
-
A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understanding videos, constructing plots: Learning a visually grounded storyline model from annotated videos. In CVPR, 2009.
-
(2009)
CVPR
-
-
Gupta, A.1
Srinivasan, P.2
Shi, J.3
Davis, L.S.4
-
11
-
-
84877635025
-
Recommendations for video event recognition using concept vocabularies
-
A. Habibian, K. E. van de Sande, and C. G. Snoek. Recommendations for video event recognition using concept vocabularies. In ICMR, 2013.
-
(2013)
ICMR
-
-
Habibian, A.1
De Van Sande, K.E.2
Snoek, C.G.3
-
12
-
-
34547469390
-
Can high-level concepts fill the semantic gap in video retrieval? a case study with broadcast news
-
A. Hauptmann, R. Yan, W.-H. Lin, M. Christel, and H. Wactlar. Can high-level concepts fill the semantic gap in video retrieval? a case study with broadcast news. IEEE Transactions on Multimedia, 9(5):958-966, 2007.
-
(2007)
IEEE Transactions on Multimedia
, vol.9
, Issue.5
, pp. 958-966
-
-
Hauptmann, A.1
Yan, R.2
Lin, W.-H.3
Christel, M.4
Wactlar, H.5
-
13
-
-
84861398963
-
On the O(1=n) convergence rate of Douglas-Rachford alternating direction method
-
B. He and X. Yuan. On the O(1=n) convergence rate of Douglas-Rachford alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700-709, 2012.
-
(2012)
SIAM Journal on Numerical Analysis
, vol.50
, Issue.2
, pp. 700-709
-
-
He, B.1
Yuan, X.2
-
14
-
-
79958737093
-
Object, scene and actions: Combining multiple features for human action recognition
-
N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions: Combining multiple features for human action recognition. In ECCV, 2010.
-
(2010)
ECCV
-
-
Ikizler-Cinbis, N.1
Sclaroff, S.2
-
15
-
-
84937895884
-
Self-paced learning with diversity
-
L. Jiang, D. Meng, S. Yu, Z. Lan, S. Shan, and A. G. Hauptmann. Self-paced learning with diversity. In NIPS, 2014.
-
(2014)
NIPS
-
-
Jiang, L.1
Meng, D.2
Yu, S.3
Lan, Z.4
Shan, S.5
Hauptmann, A.G.6
-
16
-
-
84986185450
-
High-level event recognition in unconstrained videos
-
Y.-G. Jiang, S. Bhattacharya, S.-F. Chang, and M. Shah. High-level event recognition in unconstrained videos. International Journal of Multimedia Information Retrieval, 2(2):73-101, 2013.
-
(2013)
International Journal of Multimedia Information Retrieval
, vol.2
, Issue.2
, pp. 73-101
-
-
Jiang, Y.-G.1
Bhattacharya, S.2
Chang, S.-F.3
Shah, M.4
-
17
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
18
-
-
84959216691
-
Recognizing complex events in videos by learning key static-dynamic evidences
-
K.-T. Lai, D. Liu, M.-S. Chen, and S.-F. Chang. Recognizing complex events in videos by learning key static-dynamic evidences. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lai, K.-T.1
Liu, D.2
Chen, M.-S.3
Chang, S.-F.4
-
20
-
-
80052915325
-
Recognizing human actions by attributes
-
J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011.
-
(2011)
CVPR
-
-
Liu, J.1
Kuipers, B.2
Savarese, S.3
-
21
-
-
84875599426
-
Video event recognition using concept attributes
-
J. Liu, Q. Yu, O. Javed, S. Ali, A. Tamrakar, A. Divakaran, H. Cheng, and H. Sawhney. Video event recognition using concept attributes. In WACV, 2013.
-
(2013)
WACV
-
-
Liu, J.1
Yu, Q.2
Javed, O.3
Ali, S.4
Tamrakar, A.5
Divakaran, A.6
Cheng, H.7
Sawhney, H.8
-
22
-
-
84887476399
-
Knowledge adaptation for ad hoc multimedia event detection with few exemplars
-
Z. Ma, Y. Yang, Y. Cai, N. Sebe, and A. G. Hauptmann. Knowledge adaptation for ad hoc multimedia event detection with few exemplars. In ACM MM, 2012.
-
(2012)
ACM MM
-
-
Ma, Z.1
Yang, Y.2
Cai, Y.3
Sebe, N.4
Hauptmann, A.G.5
-
23
-
-
84887438173
-
Querying for video events by semantic signatures from few examples
-
M. Mazloom, A. Habibian, and C. G. Snoek. Querying for video events by semantic signatures from few examples. In ACMMM, 2013.
-
(2013)
ACMMM
-
-
Mazloom, M.1
Habibian, A.2
Snoek, C.G.3
-
24
-
-
84856141623
-
Semantic model vectors for complex video event recognition
-
M. Merler, B. Huang, L. Xie, G. Hua, and A. Natsev. Semantic model vectors for complex video event recognition. IEEE Transactions on Multimedia, 14(1):88-101, 2012.
-
(2012)
IEEE Transactions on Multimedia
, vol.14
, Issue.1
, pp. 88-101
-
-
Merler, M.1
Huang, B.2
Xie, L.3
Hua, G.4
Natsev, A.5
-
25
-
-
84962821604
-
-
NIST. The TRECVID MED
-
NIST. The TRECVID MED 2013 evaluation plan. http://nist. gov/itl/iad/mig/med13.cfm, 2013.
-
(2013)
2013 Evaluation Plan
-
-
-
26
-
-
84962887205
-
-
NIST. The TRECVID MED
-
NIST. The TRECVID MED 2014 evaluation plan. http://nist. gov/itl/iad/mig/med14.cfm, 2014.
-
(2014)
2014 Evaluation Plan
-
-
-
27
-
-
84898791167
-
Action and event recognition with fisher vectors on a compact feature set
-
D. OneatǍ, J. Verbeek, and C. Schmid. Action and event recognition with fisher vectors on a compact feature set. In ICCV, 2013.
-
(2013)
ICCV
-
-
OneatǍ, D.1
Verbeek, J.2
Schmid, C.3
-
28
-
-
79959771606
-
Improving the fisher kernel for large-scale image classification
-
F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
-
(2010)
ECCV
-
-
Perronnin, F.1
Sánchez, J.2
Mensink, T.3
-
30
-
-
84867122531
-
Sparse support vector infinite push
-
A. Rakotomamonjy. Sparse support vector infinite push. In ICML, 2012.
-
(2012)
ICML
-
-
Rakotomamonjy, A.1
-
31
-
-
70450239631
-
The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list
-
C. Rudin. The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10:2233-2271, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
-
32
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259-268, 1992.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
34
-
-
84911429593
-
DISCOVER: Discovering important segments for classification of video events and recounting
-
C. Sun and R. Nevatia. DISCOVER: Discovering important segments for classification of video events and recounting. In CVPR, 2014.
-
(2014)
CVPR
-
-
Sun, C.1
Nevatia, R.2
-
35
-
-
84866707906
-
Evaluation of low-level features and their combinations for complex event detection in open source videos
-
A. Tamrakar, S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng, and H. Sawhney. Evaluation of low-level features and their combinations for complex event detection in open source videos. In CVPR, 2012.
-
(2012)
CVPR
-
-
Tamrakar, A.1
Ali, S.2
Yu, Q.3
Liu, J.4
Javed, O.5
Divakaran, A.6
Cheng, H.7
Sawhney, H.8
-
36
-
-
84886260236
-
Towards textually describing complex video contents with audio-visual concept classifiers
-
C. C. Tan, Y.-G. Jiang, and C.-W. Ngo. Towards textually describing complex video contents with audio-visual concept classifiers. In ACM MM, 2011.
-
(2011)
ACM MM
-
-
Tan, C.C.1
Jiang, Y.-G.2
Ngo, C.-W.3
-
37
-
-
84866658784
-
Learning latent temporal structure for complex event detection
-
K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012.
-
(2012)
CVPR
-
-
Tang, K.1
Fei-Fei, L.2
Koller, D.3
-
38
-
-
84962790169
-
The new data and new challenges in multimedia research
-
abs/ 1503 01817
-
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L. Li. The new data and new challenges in multimedia research. CoRR, abs/1503.01817, 2015.
-
(2015)
CoRR
-
-
Thomee, B.1
Shamma, D.A.2
Friedland, G.3
Elizalde, B.4
Ni, K.5
Poland, D.6
Borth, D.7
Li, L.8
-
39
-
-
84899739807
-
Highly efficient multimedia event recounting from user semantic preferences
-
C. Tsai, M. L. Alexander, N. Okwara, and J. R. Kender. Highly efficient multimedia event recounting from user semantic preferences. In ICMR, 2014.
-
(2014)
ICMR
-
-
Tsai, C.1
Alexander, M.L.2
Okwara, N.3
Kender, J.R.4
-
40
-
-
84898805910
-
Action recognition with improved trajectories
-
H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
-
(2013)
ICCV
-
-
Wang, H.1
Schmid, C.2
-
41
-
-
84898796947
-
How related exemplars help complex event detection in web videos?
-
Y. Yang, Z. Ma, Z. Xu, S. Yan, and A. G. Hauptmann. How related exemplars help complex event detection in web videos? In ICCV, 2013.
-
(2013)
ICCV
-
-
Yang, Y.1
Ma, Z.2
Xu, Z.3
Yan, S.4
Hauptmann, A.G.5
-
42
-
-
84856672971
-
Human action recognition by learning bases of action attributes and parts
-
B. Yao, X. Jiang, A. Khosla, A. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning bases of action attributes and parts. In ICCV, pages 1331-1338, 2011.
-
(2011)
ICCV
, pp. 1331-1338
-
-
Yao, B.1
Jiang, X.2
Khosla, A.3
Lin, A.4
Guibas, L.5
Fei-Fei, L.6
-
43
-
-
84962901272
-
Instructional videos for unsupervised harvesting and learning of action examples
-
S. Yu, L. Jiang, and A. G. Hauptmann. Instructional videos for unsupervised harvesting and learning of action examples. In ACM MM, 2014.
-
(2014)
ACM MM
-
-
Yu, S.1
Jiang, L.2
Hauptmann, A.G.3
-
44
-
-
84898979564
-
On decomposing the proximal map
-
Y. Yu. On decomposing the proximal map. In NIPS, 2013.
-
(2013)
NIPS
-
-
Yu, Y.1
|