-
1
-
-
0031238211
-
ITU-T recommendation G. 729 Annex B: A silence compression scheme for use with G. 729 optimized for V. 70 digital simultaneous voice and data applications
-
Sep
-
A. Benyassine, E. Shlomot, H. Y. Su, D. Massaloux, C. Lamblin, and J. P. Petit, "ITU-T recommendation G. 729 Annex B: A silence compression scheme for use with G. 729 optimized for V. 70 digital simultaneous voice and data applications, " IEEE Commun. Mag., vol. 35, no. 9, pp. 64-73, Sep. 1997.
-
(1997)
IEEE Commun. Mag
, vol.35
, Issue.9
, pp. 64-73
-
-
Benyassine, A.1
Shlomot, E.2
Su, H.Y.3
Massaloux, D.4
Lamblin, C.5
Petit, J.P.6
-
2
-
-
0018455310
-
Suppression of acoustic noise in speech using spectral subtraction
-
Apr
-
S. Boll, "Suppression of acoustic noise in speech using spectral subtraction, " IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-27, no. 2, pp. 113-120, Apr. 1979.
-
(1979)
IEEE Trans. Acoust., Speech, Signal Process
, vol.ASSP-27
, Issue.2
, pp. 113-120
-
-
Boll, S.1
-
3
-
-
77957272576
-
Speech processing, transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm; compression algorithms
-
ETSI, "Speech processing, transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm; compression algorithms, " ETSI ES vol. 202, no. 050.
-
ETSI ES
, vol.202
, Issue.50
-
-
ETSI1
-
4
-
-
84055222005
-
Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
-
Jan
-
G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition, " IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30-42, Jan. 2012.
-
(2012)
IEEE Trans. Audio, Speech, Lang. Process
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
5
-
-
0035274536
-
Robust voice activity detection using higher-order statistics in the LPC residual domain
-
Mar
-
E. Nemer, R. Goubran, and S. Mahmoud, "Robust voice activity detection using higher-order statistics in the LPC residual domain, " IEEE Trans., Speech, Audio Process., vol. 9, no. 3, pp. 217-231, Mar. 2001.
-
(2001)
IEEE Trans., Speech, Audio Process
, vol.9
, Issue.3
, pp. 217-231
-
-
Nemer, E.1
Goubran, R.2
Mahmoud, S.3
-
6
-
-
84910090795
-
The use of low-frequency ultrasound for voice activity detection
-
I. V. McLoughlin, "The use of low-frequency ultrasound for voice activity detection, " in Proc. Interspeech, 2014, pp. 1553-1557.
-
(2014)
Proc. Interspeech
, pp. 1553-1557
-
-
McLoughlin, I.V.1
-
7
-
-
84924944298
-
Single frequency filtering approach for discriminating speech and nonspeech
-
Apr
-
G. Aneeja and B. Yegnanarayana, "Single frequency filtering approach for discriminating speech and nonspeech, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23, no. 4, pp. 705-717, Apr. 2015.
-
(2015)
IEEE/ACM Trans. Audio, Speech, Lang. Process
, vol.23
, Issue.4
, pp. 705-717
-
-
Aneeja, G.1
Yegnanarayana, B.2
-
8
-
-
0032762471
-
A statistical model-based voice activity detection
-
Jan
-
J. Sohn, N. S. Kim, and W. Sung, "A statistical model-based voice activity detection, " IEEE Signal Process. Lett., vol. 6, no. 1, pp. 1-3, Jan. 1999.
-
(1999)
IEEE Signal Process. Lett
, vol.6
, Issue.1
, pp. 1-3
-
-
Sohn, J.1
Kim, N.S.2
Sung, W.3
-
9
-
-
80053614636
-
Voice activity detection based on an unsupervised learning framework
-
Nov
-
D. Ying, Y. Yan, J. Dang, and F. Soong, "Voice activity detection based on an unsupervised learning framework, " IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 8, pp. 2624-2644, Nov. 2011.
-
(2011)
IEEE Trans. Audio, Speech, Lang. Process
, vol.19
, Issue.8
, pp. 2624-2644
-
-
Ying, D.1
Yan, Y.2
Dang, J.3
Soong, F.4
-
10
-
-
0042863279
-
A soft voice activity detector based on a laplacian-Gaussian model
-
Sep
-
S. Gazor and W. Zhang, "A soft voice activity detector based on a Laplacian-Gaussian model, " IEEE Trans. Speech Audio Process., vol. 11, no. 5, pp. 498-505, Sep. 2003.
-
(2003)
IEEE Trans. Speech Audio Process
, vol.11
, Issue.5
, pp. 498-505
-
-
Gazor, S.1
Zhang, W.2
-
11
-
-
33744532633
-
Voice activity detection based on multiple statistical models
-
Jun
-
J. H. Chang, N. S. Kim, and S. K. Mitra, "Voice activity detection based on multiple statistical models, " IEEE Trans. Signal Process., vol. 54, no. 6, pp. 1965-1976, Jun. 2006.
-
(2006)
IEEE Trans. Signal Process
, vol.54
, Issue.6
, pp. 1965-1976
-
-
Chang, J.H.1
Kim, N.S.2
Mitra, S.K.3
-
12
-
-
0021645331
-
Speech enhancement using a minimum- mean square error short-time spectral amplitude estimator
-
Dec
-
Y. Ephraim and D. Malah, "Speech enhancement using a minimum- mean square error short-time spectral amplitude estimator, " IEEE Trans. Audio, Speech, Signal Process., vol. 32, no. 6, pp. 1109-1121, Dec. 1984.
-
(1984)
IEEE Trans. Audio, Speech, Signal Process
, vol.32
, Issue.6
, pp. 1109-1121
-
-
Ephraim, Y.1
Malah, D.2
-
13
-
-
23344452899
-
Statistical voice activity detection using a multiple observation likelihood ratio test
-
Oct
-
J. Ramírez, J. C. Segura, C. Benítez, L. García, and A. Rubio, "Statistical voice activity detection using a multiple observation likelihood ratio test, " IEEE Signal Process. Lett., vol. 12, no. 10, pp. 689-692, Oct. 2005.
-
(2005)
IEEE Signal Process. Lett
, vol.12
, Issue.10
, pp. 689-692
-
-
Ramírez, J.1
Segura, J.C.2
Benítez, C.3
García, L.4
Rubio, A.5
-
14
-
-
84873315510
-
Unsupervised speech activity detection using voicing measures and perceptual spectral flux
-
Mar
-
S. O. Sadjadi and J. H. L. Hansen, "Unsupervised speech activity detection using voicing measures and perceptual spectral flux, " IEEE Signal Process. Lett., vol. 20, no. 3, pp. 197-200, Mar. 2013.
-
(2013)
IEEE Signal Process. Lett
, vol.20
, Issue.3
, pp. 197-200
-
-
Sadjadi, S.O.1
Hansen, J.H.L.2
-
15
-
-
84875828442
-
Voice activity detection via noise reducing using non-negative sparse coding
-
May
-
P. Teng and Y. Jia, "Voice activity detection via noise reducing using non-negative sparse coding, " IEEE Signal Process. Lett., vol. 20, no. 5, pp. 475-478, May 2013.
-
(2013)
IEEE Signal Process. Lett
, vol.20
, Issue.5
, pp. 475-478
-
-
Teng, P.1
Jia, Y.2
-
16
-
-
84910100905
-
Voice activity detection in presence of transient noise using spectral clustering
-
Jun
-
S. Mousazadeh and I. Cohen, "Voice activity detection in presence of transient noise using spectral clustering, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 6, pp. 1261-1271, Jun. 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process
, vol.21
, Issue.6
, pp. 1261-1271
-
-
Mousazadeh, S.1
Cohen, I.2
-
17
-
-
33751423044
-
Hard c-means clustering for voice activity detection
-
J. Gorriz, J. Ramirez, E. Lang, and C. Puntonet, "Hard c-means clustering for voice activity detection, " Speech Commun., vol. 48, no. 12, pp. 1638-1649, 2005.
-
(2005)
Speech Commun
, vol.48
, Issue.12
, pp. 1638-1649
-
-
Gorriz, J.1
Ramirez, J.2
Lang, E.3
Puntonet, C.4
-
18
-
-
84878535284
-
Developing a speech activity detection system for the DARPA RATS program
-
T. Ng, B. Zhang, L. Nguyen, S. Matsoukas, X. Zhou, N. Mesgarani, K. Veselý, and P. Matejka, "Developing a speech activity detection system for the DARPA RATS program, " in Proc. Interspeech, 2012, pp. 1969-1972.
-
(2012)
Proc. Interspeech
, pp. 1969-1972
-
-
Ng, T.1
Zhang, B.2
Nguyen, L.3
Matsoukas, S.4
Zhou, X.5
Mesgarani, N.6
Vesely, K.7
Matejka, P.8
-
19
-
-
51449114537
-
Applying support vector machines to voice activity detection
-
D. Enqing, L. Guizhong, Z. Yatong, and Z. Xiaodi, "Applying support vector machines to voice activity detection, " in Proc. Int. Conf. Signal Process., 2002, vol. 2, pp. 1124-1127.
-
(2002)
Proc. Int. Conf. Signal Process
, vol.2
, pp. 1124-1127
-
-
Enqing, D.1
Guizhong, L.2
Yatong, Z.3
Xiaodi, Z.4
-
20
-
-
77950091897
-
Voice activity detection based on statistical models and machine learning approaches
-
J. W. Shin, J. H. Chang, and N. S. Kim, "Voice activity detection based on statistical models and machine learning approaches, " Comput. Speech Lang., vol. 24, no. 3, pp. 515-530, 2010.
-
(2010)
Comput. Speech Lang
, vol.24
, Issue.3
, pp. 515-530
-
-
Shin, J.W.1
Chang, J.H.2
Kim, N.S.3
-
21
-
-
84872300403
-
Deep belief networks based voice activity detection
-
Apr
-
X.-L. Zhang and J. Wu, "Deep belief networks based voice activity detection, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 4, pp. 697-710, Apr. 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process
, vol.21
, Issue.4
, pp. 697-710
-
-
Zhang, X.-L.1
Wu, J.2
-
22
-
-
84890484287
-
Recurrent neural networks for voice activity detection
-
T. Hughes and K. Mierle, "Recurrent neural networks for voice activity detection, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2013, pp. 7378-7382.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 7378-7382
-
-
Hughes, T.1
Mierle, K.2
-
23
-
-
84890443834
-
Real-life voice activity detection with lstm recurrent neural networks and an application to Hollywood movies
-
F. Eyben, F. Weninger, S. Squartini, and B. Schuller, "Real-life voice activity detection with lstm recurrent neural networks and an application to Hollywood movies, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, 2013, pp. 483-487.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 483-487
-
-
Eyben, F.1
Weninger, F.2
Squartini, S.3
Schuller, B.4
-
24
-
-
84906222432
-
The IBM speech activity detection system for the DARPA RATS program
-
G. Saon, S. Thomas, H. Soltau, S. Ganapathy, and B. Kingsbury, "The IBM speech activity detection system for the DARPA RATS program, " in Proc. Interspeech, 2013, pp. 3497-3501.
-
(2013)
Proc. Interspeech
, pp. 3497-3501
-
-
Saon, G.1
Thomas, S.2
Soltau, H.3
Ganapathy, S.4
Kingsbury, B.5
-
25
-
-
84910097441
-
Boosted deep neural networks and multi-resolution cochleagram features for voice activity detection
-
X.-L. Zhang and D. L. Wang, "Boosted deep neural networks and multi-resolution cochleagram features for voice activity detection, " in Proc. Interspeech, 2014, pp. 1534-1538.
-
(2014)
Proc. Interspeech
, pp. 1534-1538
-
-
Zhang, X.-L.1
Wang, D.L.2
-
26
-
-
84946073523
-
Improvements to the IBM speech activity detection system for the DARPA RATS program
-
S. Thomas, G. Saon, M. Van Segbroeck, and S. S. Narayanan, "Improvements to the IBM speech activity detection system for the DARPA RATS program, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, 2015, pp. 4500-4504.
-
(2015)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 4500-4504
-
-
Thomas, S.1
Saon, G.2
Van Segbroeck, M.3
Narayanan, S.S.4
-
27
-
-
84905215263
-
Unsupervised domain adaptation for deep neural network based voice activity detection
-
X.-L. Zhang, "Unsupervised domain adaptation for deep neural network based voice activity detection, " in Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., 2014, pp. 6864-6868.
-
(2014)
Proc. IEEE Int. Conf. Acoust. Speech, Signal Process
, pp. 6864-6868
-
-
Zhang, X.-L.1
-
28
-
-
85073251381
-
The RATS radio traffic collection system
-
K. Walker and S. Strassel, "The RATS radio traffic collection system, " in Proc. ISCA Odyssey, 2012, pp. 291-297.
-
(2012)
Proc. ISCA Odyssey
, pp. 291-297
-
-
Walker, K.1
Strassel, S.2
-
29
-
-
84959129858
-
Deep neural network based supervised speech segregation generalizes to novel noises through largescale training
-
Dept. of Comput. Sci. and Eng. The Ohio State Univ. Columbus, OH, USA
-
Y. Wang, J. Chen, and D. L. Wang, "Deep neural network based supervised speech segregation generalizes to novel noises through largescale training, " Dept. of Comput. Sci. and Eng., The Ohio State Univ., Columbus, OH, USA, Tech. Rep. OSU-CISRC-3/15-TR02, 2015.
-
(2015)
Tech. Rep. OSU-CISRC-3/15-TR02
-
-
Wang, Y.1
Chen, J.2
Wang, D.L.3
-
30
-
-
84875678689
-
Towards scaling up classification-based speech separation
-
Jul
-
Y. Wang and D. L. Wang, "Towards scaling up classification-based speech separation, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 7, pp. 1381-1390, Jul. 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process
, vol.21
, Issue.7
, pp. 1381-1390
-
-
Wang, Y.1
Wang, D.L.2
-
31
-
-
84921769616
-
A feature study for classificationbased speech separation at very low signal-to-noise ratio
-
Dec
-
J. Chen, Y. Wang, and D. L. Wang, "A feature study for classificationbased speech separation at very low signal-to-noise ratio, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22, no. 12, pp. 1993-2002, Dec. 2014.
-
(2014)
IEEE/ACM Trans. Audio, Speech, Lang. Process
, vol.22
, Issue.12
, pp. 1993-2002
-
-
Chen, J.1
Wang, Y.2
Wang, D.L.3
-
32
-
-
84987702417
-
The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions
-
D. Pearce and H. Hirsch et al., "The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions, " in Proc. ICSLP'00, 2000, vol. 4, pp. 29-32.
-
(2000)
Proc. ICSLP'00
, vol.4
, pp. 29-32
-
-
Pearce, D.1
Hirsch, H.2
-
33
-
-
84910032338
-
Aurora working group: DSR front end LVCSR evaluation AU/384/02
-
Mississippi State Univ. Tech. Rep
-
D. Pearce and J. Picone, "Aurora working group: DSR front end LVCSR evaluation AU/384/02, " Inst. for Signal & Inf. Process., Mississippi State Univ., Tech. Rep., 2002.
-
(2002)
Inst. for Signal & Inf. Process
-
-
Pearce, D.1
Picone, J.2
-
34
-
-
84962833674
-
Boosting contextual information for deep neural network based voice activity detection
-
The Ohio State Univ. Columbus, OH, USA, Tech. Rep. OSUCISRC- 5/15-TR06, Tech. Rep, Dept. of Comput. Sci. Eng
-
X.-L. Zhang and D. L. Wang, Boosting contextual information for deep neural network based voice activity detection Dept. of Comput. Sci. Eng., The Ohio State Univ., Columbus, OH, USA, Tech. Rep. OSUCISRC- 5/15-TR06, 2015, Tech. Rep..
-
(2015)
Tech. Rep. OSUCISRC- 5/15-TR06
-
-
Zhang, X.-L.1
Wang, D.L.2
-
35
-
-
80053403826
-
Ensemble methods in machine learning
-
G. Goos, J. Hartmanis, and J. van Leeuwen, Eds. New York, NY, USA: Springer
-
T. G. Dietterich, "Ensemble methods in machine learning, " in Multiple Classifier Sys., G. Goos, J. Hartmanis, and J. van Leeuwen, Eds. New York, NY, USA: Springer, 2000, pp. 1-15.
-
(2000)
Multiple Classifier Sys
, pp. 1-15
-
-
Dietterich, T.G.1
-
36
-
-
84983110889
-
A desicion-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting, " in Proc. Int. Conf. Comput. Learn. Theory, 1995, pp. 23-37.
-
(1995)
Proc. Int. Conf. Comput. Learn. Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
37
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, "The strength of weak learnability, " Mach. Learn., vol. 5, no. 2, pp. 197-227, 1990.
-
(1990)
Mach. Learn
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
38
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
39
-
-
84905248198
-
Deep stacking networks with time series for speech separation
-
S. Nie, H. Zhang, X. Zhang, and W. Liu, "Deep stacking networks with time series for speech separation, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 6667-6671.
-
(2014)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 6667-6671
-
-
Nie, S.1
Zhang, H.2
Zhang, X.3
Liu, W.4
-
40
-
-
84871387302
-
The deep tensor neural network with applications to large vocabulary speech recognition
-
Feb
-
D. Yu, L. Deng, and F. Seide, "The deep tensor neural network with applications to large vocabulary speech recognition, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 2, pp. 388-396, Feb. 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process
, vol.21
, Issue.2
, pp. 388-396
-
-
Yu, D.1
Deng, L.2
Seide, F.3
-
41
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting, " J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
42
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, and P. A. Tucker et al., "Large scale distributed deep networks, " in Adv. Neural Inf. Process. Syst., 2012, pp. 1232-1240.
-
(2012)
Adv. Neural Inf. Process. Syst
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, A.W.9
Tucker, P.A.10
-
43
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning, " in Proc. Int. Conf. Mach. Learn., 2013, pp. 1-8.
-
(2013)
Proc. Int. Conf. Mach. Learn
, pp. 1-8
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
44
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors, " Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
45
-
-
38849102154
-
Auditory segmentation based on onset and offset analysis
-
Feb
-
G. Hu and D. L. Wang, "Auditory segmentation based on onset and offset analysis, " IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 2, pp. 396-405, Feb. 2007.
-
(2007)
IEEE Trans. Audio, Speech, Lang. Process
, vol.15
, Issue.2
, pp. 396-405
-
-
Hu, G.1
Wang, D.L.2
-
46
-
-
84871829474
-
A multistream feature framework based on bandpass modulation filtering for robust speech recognition
-
Feb
-
S. K. Nemala, K. Patil, and M. Elhilali, "A multistream feature framework based on bandpass modulation filtering for robust speech recognition, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 2, pp. 416-426, Feb. 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process
, vol.21
, Issue.2
, pp. 416-426
-
-
Nemala, S.K.1
Patil, K.2
Elhilali, M.3
-
47
-
-
82255178542
-
-
Eds., New York, NY, USA: Wiley-IEEE Press
-
D. L. Wang and G. J. Brown, Eds., Computational Auditory Scene Analysis: Principles, Algorithms and Applications. New York, NY, USA: Wiley-IEEE Press, 2006.
-
(2006)
Computational Auditory Scene Analysis: Principles, Algorithms and Applications
-
-
Wang, D.L.1
Brown, G.J.2
-
48
-
-
84911372460
-
Dual-microphone voice activity detection technique based on two-step power level difference ratio
-
Jun
-
J.-H. Choi and J.-H. Chang, "Dual-microphone voice activity detection technique based on two-step power level difference ratio, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22, no. 6, pp. 1069-1081, Jun. 2014.
-
(2014)
IEEE/ACM Trans. Audio, Speech, Lang. Process
, vol.22
, Issue.6
, pp. 1069-1081
-
-
Choi, J.-H.1
Chang, J.-H.2
-
49
-
-
4243540190
-
-
The Rice University, ", " [Online]. Available
-
The Rice University, "Noisex-92 database, " [Online]. Available: http://spib.rice.edu/spib.
-
Noisex-92 Database
-
-
-
50
-
-
84921805800
-
Neural network based pitch tracking in very noisy speech
-
Dec
-
K. Han and D. Wang, "Neural network based pitch tracking in very noisy speech, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22, no. 12, pp. 2158-2168, Dec. 2014.
-
(2014)
IEEE/ACM Trans. Audio, Speech, Lang. Process
, vol.22
, Issue.12
, pp. 2158-2168
-
-
Han, K.1
Wang, D.2
-
51
-
-
77956733652
-
Low-complexity variable frame rate analysis for speech recognition and voice activity detection
-
Oct
-
Z.-H. Tan and B. Lindberg, "Low-complexity variable frame rate analysis for speech recognition and voice activity detection, " IEEE J. Sel. Topics Signal Process., vol. 4, no. 5, pp. 798-807, Oct. 2010.
-
(2010)
IEEE J. Sel. Topics Signal Process
, vol.4
, Issue.5
, pp. 798-807
-
-
Tan, Z.-H.1
Lindberg, B.2
|