-
1
-
-
79959828814
-
Deep-structured hidden conditional random fields for phonetic recognition
-
D. Yu and L. Deng, "Deep-structured hidden conditional random fields for phonetic recognition, " in Proc. Inter Speech, 2010, pp. 2986-2989.
-
(2010)
Proc. Inter Speech
, pp. 2986-2989
-
-
Yu, D.1
Deng, L.2
-
2
-
-
84906277631
-
Multiband long-term signal variability features for robust voice activity detection
-
A. Tsiartas, T. Chaspari, N. Katsamanis, P. Ghosh, M. Li, M. Van Segbroeck, A. Potamianos, and S. S. Narayanan, "Multiband long-term signal variability features for robust voice activity detection, " in Proc. Inter Speech, 2013, pp. 718-722.
-
(2013)
Proc. Inter Speech
, pp. 718-722
-
-
Tsiartas, A.1
Chaspari, T.2
Katsamanis, N.3
Ghosh, P.4
Li, M.5
Segbroeck, M.V.6
Potamianos, A.7
Narayanan, S.S.8
-
3
-
-
0032762471
-
A statistical model-based voice activity detection
-
J. Sohn, N. S. Kim, andW. Sung, "A statistical model-based voice activity detection, " IEEE Signal Process. Lett., vol. 6, no. 1, pp. 1-3, 1999.
-
(1999)
IEEE Signal Process. Lett.
, vol.6
, Issue.1
, pp. 1-3
-
-
Sohn, J.1
Kim, N.S.2
Sung, A.3
-
4
-
-
80052045343
-
Convex combination of multiple statistical models with application to vad
-
T. Petsatodis, C. Boukis, F. Talantzis, Z. Tan, and R. Prasad, "Convex combination of multiple statistical models with application to vad, " IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 8, pp. 2314-2327, 2011.
-
(2011)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.19
, Issue.8
, pp. 2314-2327
-
-
Petsatodis, T.1
Boukis, C.2
Talantzis, F.3
Tan, Z.4
Prasad, R.5
-
5
-
-
77950091897
-
Voice activity detection based on statistical models and machine learning approaches
-
J. W. Shin, J. H. Chang, and N. S. Kim, "Voice activity detection based on statistical models and machine learning approaches, " Computer Speech & Lang., vol. 24, no. 3, pp. 515-530, 2010.
-
(2010)
Computer Speech & Lang.
, vol.24
, Issue.3
, pp. 515-530
-
-
Shin, J.W.1
Chang, J.H.2
Kim, N.S.3
-
6
-
-
79959838316
-
Voice activity detection based on conditional random fields using multiple features
-
A. Saito, Y. Nankaku, A. Lee, and K. Tokuda, "Voice activity detection based on conditional random fields using multiple features." in Proc. Inter speech, 2010, pp. 2086-2089.
-
(2010)
Proc. Inter Speech
, pp. 2086-2089
-
-
Saito, A.1
Nankaku, Y.2
Lee, A.3
Tokuda, K.4
-
7
-
-
84875828442
-
Voice activity detection via noise reducing using non-negative sparse coding
-
P. Teng and Y. Jia, "Voice activity detection via noise reducing using non-negative sparse coding, " IEEE Signal Process. Lett., vol. 20, no. 5, pp. 475-478, 2013.
-
(2013)
IEEE Signal Process. Lett.
, vol.20
, Issue.5
, pp. 475-478
-
-
Teng, P.1
Jia, Y.2
-
8
-
-
84910100905
-
Voice activity detection in presence of transient noise using spectral clustering
-
S. Mousazadeh and I. Cohen, "Voice activity detection in presence of transient noise using spectral clustering." IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 6, pp. 1261-1271, 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.21
, Issue.6
, pp. 1261-1271
-
-
Mousazadeh, S.1
Cohen, I.2
-
9
-
-
77956289831
-
Discriminative training for multiple observation likelihood ratio based voice activity detection
-
T. Yu and J. H. L. Hansen, "Discriminative training for multiple observation likelihood ratio based voice activity detection, " IEEE Signal Process. Lett., vol. 17, no. 11, pp. 897-900, 2010.
-
(2010)
IEEE Signal Process. Lett.
, vol.17
, Issue.11
, pp. 897-900
-
-
Yu, T.1
Hansen, J.H.L.2
-
10
-
-
80053614636
-
Voice activity detection based on an unsupervised learning framework
-
D. Ying, Y. Yan, J. Dang, and F. Soong, "Voice activity detection based on an unsupervised learning framework, " IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 8, pp. 2624-2644, 2011.
-
(2011)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.19
, Issue.8
, pp. 2624-2644
-
-
Ying, D.1
Yan, Y.2
Dang, J.3
Soong, F.4
-
11
-
-
85008579584
-
Multiple acoustic model-based discriminative likelihood ratio weighting for voice activity detection
-
Y. Suh and H. Kim, "Multiple acoustic model-based discriminative likelihood ratio weighting for voice activity detection, " IEEE Signal Process. Lett., vol. 19, no. 8, pp. 507-510, 2012.
-
(2012)
IEEE Signal Process. Lett.
, vol.19
, Issue.8
, pp. 507-510
-
-
Suh, Y.1
Kim, H.2
-
12
-
-
84890490765
-
Robust front-end processing for speaker identification over extremely degraded communication channels
-
S. O. Sadjadi and J. H. Hansen, "Robust front-end processing for speaker identification over extremely degraded communication channels, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2013, pp. 7214-7218.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, pp. 7214-7218
-
-
Sadjadi, S.O.1
Hansen, J.H.2
-
13
-
-
84890484287
-
Recurrent neural networks for voice activity detection
-
T. Hughes and K. Mierle, "Recurrent neural networks for voice activity detection, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2013, pp. 7378-7382.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, pp. 7378-7382
-
-
Hughes, T.1
Mierle, K.2
-
14
-
-
84872300403
-
Deep belief networks based voice activity detection
-
X.-L. Zhang and J. Wu, "Deep belief networks based voice activity detection, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 4, pp. 697-710, 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.21
, Issue.4
, pp. 697-710
-
-
Zhang, X.-L.1
Wu, J.2
-
15
-
-
84906228076
-
Speech activity detection on youtube using deep neural networks
-
N. Ryant, M. Liberman, and J. Yuan, "Speech activity detection on youtube using deep neural networks, " in Proc. Inter Speech, 2013, pp. 728-731.
-
(2013)
Proc. Inter Speech
, pp. 728-731
-
-
Ryant, N.1
Liberman, M.2
Yuan, J.3
-
16
-
-
84905233552
-
A feature study for classification-based speech separation at very low signal-to-noise ratio
-
in press
-
J. Chen, Y. Wang, and D. L. Wang, "A feature study for classification-based speech separation at very low signal-to-noise ratio, " in Proc. Int. Conf. Acoust., Speech, Signal Process., 2014, in press.
-
(2014)
Proc. Int. Conf. Acoust., Speech, Signal Process.
-
-
Chen, J.1
Wang, Y.2
Wang, D.L.3
-
18
-
-
80053403826
-
Ensemble methods in machine learning
-
T. G. Dietterich, "Ensemble methods in machine learning, " Multiple Classifier Sys., pp. 1-15, 2000.
-
(2000)
Multiple Classifier Sys.
, pp. 1-15
-
-
Dietterich, T.G.1
-
19
-
-
84890527827
-
Improving deep neural networks for LVCSR using rectified linear units and dropout
-
G. E. Dahl, T. N. Sainath, and G. E. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2013, pp. 8609-8613.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, pp. 8609-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
20
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker et al., "Large scale distributed deep networks." in Adv. Neural Inform. Process. Sys., 2012, pp. 1232-1240.
-
(2012)
Adv. Neural Inform. Process. Sys.
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, W.A.9
Tucker, P.A.10
-
21
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning, " in Proc. Int. Conf. Machine Learn., 2013, pp. 1-8.
-
(2013)
Proc. Int. Conf. Machine Learn.
, pp. 1-8
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
22
-
-
38849102154
-
Auditory segmentation based on onset and offset analysis
-
G. Hu and D. L. Wang, "Auditory segmentation based on onset and offset analysis, " IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 2, pp. 396-405, 2007.
-
(2007)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.15
, Issue.2
, pp. 396-405
-
-
Hu, G.1
Wang, D.L.2
-
23
-
-
84871829474
-
A multi stream feature framework based on bandpass modulation filtering for robust speech recognition
-
S. K. Nemala, K. Patil, and M. Elhilali, "A multistream feature framework based on bandpass modulation filtering for robust speech recognition, " IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 2, pp. 416-426, 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.21
, Issue.2
, pp. 416-426
-
-
Nemala, S.K.1
Patil, K.2
Elhilali, M.3
-
24
-
-
71049180205
-
Computational auditory scene analysis: Principles
-
Wiley-IEEE Press
-
D. L.Wang and G. J. Brown, Computational Auditory Scene Analysis: Principles, Algorithms and Applications. Wiley-IEEE Press, 2006.
-
(2006)
Algorithms and Applications
-
-
Wang, D.L.1
Brown, G.J.2
-
25
-
-
23344452899
-
Statistical voice activity detection using a multiple observation likelihood ratio test
-
J. Ramírez, J. C. Segura, C. Benítez, L. Garciá, and A. Rubio, "Statistical voice activity detection using a multiple observation likelihood ratio test, " IEEE Signal Process. Lett., vol. 12, no. 10, pp. 689-692, 2005.
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, Issue.10
, pp. 689-692
-
-
Ramírez, J.1
Segura, J.C.2
Benítez, C.3
Garciá, L.4
Rubio, A.5
|