메뉴 건너뛰기




Volumn 3, Issue 3, 2014, Pages 260-265

Statistical strategies for microRNAseq batch effect reduction

Author keywords

Batch effect removal; miRNA sequencing; Normalization

Indexed keywords


EID: 84962648175     PISSN: 2218676X     EISSN: 22196803     Source Type: Journal    
DOI: 10.3978/j.issn.2218-676X.2014.06.05     Document Type: Article
Times cited : (10)

References (23)
  • 1
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63.
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 2
    • 46249130709 scopus 로고    scopus 로고
    • The beginning of the end for microarrays?
    • Shendure J. The beginning of the end for microarrays? Nat Methods 2008;5:585-7.
    • (2008) Nat Methods , vol.5 , pp. 585-587
    • Shendure, J.1
  • 3
    • 84882692468 scopus 로고    scopus 로고
    • Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data
    • Guo Y, Sheng Q, Li J, et al. Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One 2013;8:e71462.
    • (2013) PLoS One , vol.8 , pp. e71462
    • Guo, Y.1    Sheng, Q.2    Li, J.3
  • 4
    • 33846283385 scopus 로고    scopus 로고
    • The evolution of gene regulation by transcription factors and microRNAs
    • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007;8:93-103.
    • (2007) Nat Rev Genet , vol.8 , pp. 93-103
    • Chen, K.1    Rajewsky, N.2
  • 5
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 7
    • 78651293534 scopus 로고    scopus 로고
    • miRBase: integrating microRNA annotation and deep-sequencing data
    • Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011;39:D152-7.
    • (2011) Nucleic Acids Res , vol.39 , pp. D152-D157
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 8
    • 58149179989 scopus 로고    scopus 로고
    • miR2Disease: a manually curated database for microRNA deregulation in human disease
    • Jiang Q, Wang Y, Hao Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009;37:D98-104.
    • (2009) Nucleic Acids Res , vol.37 , pp. D98-D104
    • Jiang, Q.1    Wang, Y.2    Hao, Y.3
  • 9
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-8.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3
  • 10
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511-5.
    • (2010) Nat Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3
  • 11
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8:118-27.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 12
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010;11:733-9.
    • (2010) Nat Rev Genet , vol.11 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3
  • 13
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010;11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3
  • 14
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnstone IM, et al. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 2012;13:523-38.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3
  • 15
    • 84874524608 scopus 로고    scopus 로고
    • Evaluation of allele frequency estimation using pooled sequencing data simulation
    • Guo Y, Samuels DC, Li J, et al. Evaluation of allele frequency estimation using pooled sequencing data simulation. Scientific World Journal 2013;2013:895496.
    • (2013) Scientific World Journal , vol.2013 , pp. 895496
    • Guo, Y.1    Samuels, D.C.2    Li, J.3
  • 16
    • 84885067990 scopus 로고    scopus 로고
    • An evaluation of allele frequency estimation accuracy using pooled sequencing data
    • Guo Y, Cai Q, Li C, et al. An evaluation of allele frequency estimation accuracy using pooled sequencing data. Int J Comput Biol Drug Des 2013;6:279-93.
    • (2013) Int J Comput Biol Drug Des , vol.6 , pp. 279-293
    • Guo, Y.1    Cai, Q.2    Li, C.3
  • 17
    • 84889664774 scopus 로고    scopus 로고
    • Evaluation of read count based RNAseq analysis methods
    • Guo Y, Li CI, Ye F, et al. Evaluation of read count based RNAseq analysis methods. BMC Genomics 2013;14 Suppl 8:S2.
    • (2013) BMC Genomics , vol.14 , pp. S2
    • Guo, Y.1    Li, C.I.2    Ye, F.3
  • 18
    • 83455237886 scopus 로고    scopus 로고
    • Batch effect correction for genome-wide methylation data with Illumina Infinium platform
    • Sun Z, Chai HS, Wu Y, et al. Batch effect correction for genome-wide methylation data with Illumina Infinium platform. BMC Med Genomics 2011;4:84.
    • (2011) BMC Med Genomics , vol.4 , pp. 84
    • Sun, Z.1    Chai, H.S.2    Wu, Y.3
  • 19
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012;13:204-16.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 20
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008;18:1509-17.
    • (2008) Genome Res , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3
  • 21
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 22
    • 84902203573 scopus 로고    scopus 로고
    • MultiRankSeq: Multiperspective Approach for RNAseq Differential Expression Analysis and Quality Control
    • Guo Y, Zhao S, Ye F, et al. MultiRankSeq: Multiperspective Approach for RNAseq Differential Expression Analysis and Quality Control. BioMed Research International 2014;2014:8.
    • (2014) BioMed Research International , vol.2014 , pp. 8
    • Guo, Y.1    Zhao, S.2    Ye, F.3
  • 23
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer PL, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics 2010;185:405-16.
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.