메뉴 건너뛰기




Volumn 26, Issue 1, 2016, Pages 781-809

A fast active set block coordinate descent algorithm for ℓ1-regularized least squares

Author keywords

Active set; Sparse optimization; 1 regularized least squares

Indexed keywords

ALGORITHMS; COMPRESSED SENSING; IMAGE PROCESSING; OPTIMIZATION;

EID: 84962383382     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/141000737     Document Type: Article
Times cited : (35)

References (32)
  • 1
    • 33646712150 scopus 로고    scopus 로고
    • On the uniqueness of overcomplete dictionaries and a practical way to retrieve them
    • M. Aharon, M. Elad, and A. M. Bruckstein, On the uniqueness of overcomplete dictionaries and a practical way to retrieve them, Linear Algebra Appl., 416, 2006, pp. 48-67.
    • (2006) Linear Algebra Appl. , vol.416 , pp. 48-67
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 2
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problem
    • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 36749005582 scopus 로고    scopus 로고
    • A new TwIST: Two-step iterative shrink-age/thresholding algorithms for image restoration
    • J. M. Bioucas-Dias and M. Figueiredo, A new TwIST: Two-step iterative shrink-age/thresholding algorithms for image restoration, IEEE Trans. Image Process., 16 (2007), pp. 2992-3004.
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 2992-3004
    • Bioucas-Dias, J.M.1    Figueiredo, M.2
  • 5
    • 85043187356 scopus 로고    scopus 로고
    • A family of second-order methods for convex L1-regularized optimization
    • to appear
    • R. H. Byrd, G. M. Chi, J. Nocedal, and F. Oztoprak, A family of second-order methods for convex L1-regularized optimization, Math. Program., to appear.
    • Math. Program
    • Byrd, R.H.1    Chi, G.M.2    Nocedal, J.3    Oztoprak, F.4
  • 6
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), pp. 4203-4215.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 7
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168-1200.
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 9
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defriese, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413-1457.
    • (2004) Comm. Pure Appl. Math. , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defriese, M.2    De Mol, C.3
  • 10
    • 84868338629 scopus 로고    scopus 로고
    • An active set feasible method for large-scale minimization problems with bound constraints
    • M. De Santis, G. Di Pillo, and S. Lucidi, An active set feasible method for large-scale minimization problems with bound constraints, Comput. Optim. Appl., 53 (2012), pp. 395-423.
    • (2012) Comput. Optim. Appl. , vol.53 , pp. 395-423
    • De Santis, M.1    Di Pillo, G.2    Lucidi, S.3
  • 11
    • 28244496090 scopus 로고    scopus 로고
    • Benchmarking optimization software with performance profiles
    • E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201-213.
    • (2002) Math. Program. , vol.91 , pp. 201-213
    • Dolan, E.D.1    Moré, J.J.2
  • 12
    • 21844493148 scopus 로고
    • Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems
    • F. Facchinei and S. Lucidi, Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems, J. Optim. Theory Appl., 85 (1995), pp. 265-289.
    • (1995) J. Optim. Theory Appl. , vol.85 , pp. 265-289
    • Facchinei, F.1    Lucidi, S.2
  • 15
    • 85043170915 scopus 로고    scopus 로고
    • A second-order method for strongly convex L1-regularization problems
    • to appear
    • K. Fountoulakis and J. Gondzio, A second-order method for strongly convex L1-regularization problems, Math. Program., to appear.
    • Math. Program
    • Fountoulakis, K.1    Gondzio, J.2
  • 16
    • 44449098059 scopus 로고    scopus 로고
    • A semismooth Newton method for Tikhonov functionals with sparsity constraints
    • R. Griesse and D. A. Lorenz, A semismooth Newton method for Tikhonov functionals with sparsity constraints, Inverse Problems, 24 (2008), 035007.
    • (2008) Inverse Problems , vol.24 , pp. 035007
    • Griesse, R.1    Lorenz, D.A.2
  • 17
    • 69649095451 scopus 로고    scopus 로고
    • 1-minimization: Method-ology and convergence
    • 1-minimization: Method-ology and convergence, SIAM J. Optim., 19 (2008), pp. 1107-1130.
    • (2008) SIAM J. Optim. , vol.19 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 19
    • 0026839499 scopus 로고
    • On the linear convergence of descent methods for convex essentially smooth minimization
    • Z.-Q. Luo and P. Tseng, On the linear convergence of descent methods for convex essentially smooth minimization, SIAM J. Control Optim., 30 (1992), pp. 408-425.
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 408-425
    • Luo, Z.-Q.1    Tseng, P.2
  • 20
    • 0003602606 scopus 로고
    • Iterative solution of nonlinear equations in several variables, classic
    • SIAM, Philadelphia
    • J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, classic, Appl. Math. 30, SIAM, Philadelphia, 1970.
    • (1970) Appl. Math. , vol.30
    • Ortega, J.M.1    Rheinboldt, W.C.2
  • 21
    • 84926636639 scopus 로고    scopus 로고
    • A variable fixing version of the two-block nonlinear constrained Gauss–Seidel algorithm forℓ1-Regularized least-squares
    • M. Porcelli and F. Rinaldi, Variable fixing version of the two-block nonlinear constrained Gauss-Seidel algorithm for l1-regularized least-squares, Comput. Optim. Appl., 59 (2014), pp. 565-589, doi: 10.1007/s10589-014-9653-0.
    • (2014) Computational Optimization and Applications , vol.59 , Issue.3 , pp. 565-589
    • Porcelli, M.1    Rinaldi, F.2
  • 22
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • P. Richtárik and M. Takáć, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Math. Program., 144 (2014), pp. 1-38.
    • (2014) Math. Program. , vol.144 , pp. 1-38
    • Richtárik, P.1    Takáć, M.2
  • 23
    • 84947110023 scopus 로고    scopus 로고
    • Parallel coordinate descent methods for big data optimization
    • to appear
    • P. Richtarik and M. Takac, Parallel coordinate descent methods for big data optimization, Math. Program., to appear.
    • Math. Program
    • Richtarik, P.1    Takac, M.2
  • 25
    • 0035533631 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng, A coordinate gradient descent method for nonsmooth separable minimization, J. Optim. Theory Appl., 109 (2001), pp. 475-494.
    • (2001) J. Optim. Theory Appl. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 26
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable mini-mization
    • P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable mini-mization, Math. Program., 117 (2009), pp. 387-423.
    • (2009) Math. Program. , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 27
  • 28
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage subspace optimization and continuation
    • Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation, SIAM J. Sci. Comput., 32 (2010), pp. 1832-1857.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1832-1857
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 29
    • 84864195124 scopus 로고    scopus 로고
    • On the convergence of an active-set method for l1-minimization
    • Z. Wen, W. Yin, H. Zhang, and D. Goldfarb, On the convergence of an active-set method for l1-minimization, Optim. Methods Softw., 27 (2012), pp. 1127-1146.
    • (2012) Optim. Methods Softw. , vol.27 , pp. 1127-1146
    • Wen, Z.1    Yin, W.2    Zhang, H.3    Goldfarb, D.4
  • 30
    • 84861594597 scopus 로고    scopus 로고
    • Accelerated block-coordinate relaxation for regularized optimization
    • S. J. Wright, Accelerated block-coordinate relaxation for regularized optimization, SIAM J. Optim., 22 (2012), pp. 159-186.
    • (2012) SIAM J. Optim. , vol.22 , pp. 159-186
    • Wright, S.J.1
  • 31
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale l1-regularized linear classification
    • G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin, A comparison of optimization methods and software for large-scale l1-regularized linear classification, J. Mach. Learn. Res., 11 (2010), pp. 3183-3234.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3183-3234
    • Yuan, G.X.1    Chang, K.W.2    Hsieh, C.J.3    Lin, C.J.4
  • 32
    • 79955559521 scopus 로고    scopus 로고
    • A coordinate gradient descent method for l1-regularized convex mini-mization
    • S. Yun and K. Toh, A coordinate gradient descent method for l1-regularized convex mini-mization, Comput. Optim. Appl., 48 (2011), pp. 273-307.
    • (2011) Comput. Optim. Appl. , vol.48 , pp. 273-307
    • Yun, S.1    Toh, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.