메뉴 건너뛰기




Volumn , Issue , 2014, Pages 7208-7212

Flexible parallel algorithms for big data optimization

Author keywords

Jacobi method; LASSO; Parallel optimization; Sparse solution

Indexed keywords

ALGORITHMS; ITERATIVE METHODS; SIGNAL PROCESSING;

EID: 84905215270     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6854999     Document Type: Conference Paper
Times cited : (23)

References (32)
  • 6
    • 84874622647 scopus 로고    scopus 로고
    • Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC
    • I. Necoara and D. Clipici, "Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC," Journal of Process Control, vol. 23, no. 3, pp. 243-253, 2013.
    • (2013) Journal of Process Control , vol.23 , Issue.3 , pp. 243-253
    • Necoara, I.1    Clipici, D.2
  • 7
    • 85057290169 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Y. Nesterov, "Gradient methods for minimizing composite functions," Mathematical Programming, pp. 1-37, 2012.
    • (2012) Mathematical Programming , pp. 1-37
    • Nesterov, Y.1
  • 8
    • 84865692149 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on hugescale optimization problems
    • -, "Efficiency of coordinate descent methods on hugescale optimization problems," SIAM Journal on Optimization, vol. 22, no. 2, pp. 341-362, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.2 , pp. 341-362
    • Nesterov, Y.1
  • 10
    • 79952039898 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms
    • A. Rakotomamonjy, "Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms," Signal processing, vol. 91, no. 7, pp. 1505-1526, 2011.
    • (2011) Signal Processing , vol.91 , Issue.7 , pp. 1505-1526
    • Rakotomamonjy, A.1
  • 11
    • 84880570485 scopus 로고    scopus 로고
    • A unified convergence analysis of block successive minimization methods for nonsmooth optimization
    • M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126-1153, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.2 , pp. 1126-1153
    • Razaviyayn, M.1    Hong, M.2    Luo, Z.-Q.3
  • 12
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • P. Richtárik and M. Takáč, "Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function," Mathematical Programming, pp. 1-38, 2012.
    • (2012) Mathematical Programming , pp. 1-38
    • Richtárik, P.1    Takáč, M.2
  • 15
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun, "A coordinate gradient descent method for nonsmooth separable minimization," Mathematical Programming, vol. 117, no. 1-2, pp. 387-423, 2009.
    • (2009) Mathematical Programming , vol.117 , Issue.1-2 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 18
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale l1-regularized linear classification
    • G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, "A comparison of optimization methods and software for large-scale l1-regularized linear classification," The Journal of Machine Learning Research, vol. 9999, pp. 3183-3234, 2010.
    • (2010) The Journal of Machine Learning Research , vol.9999 , pp. 3183-3234
    • Yuan, G.-X.1    Chang, K.-W.2    Hsieh, C.-J.3    Lin, C.-J.4
  • 19
    • 84861594597 scopus 로고    scopus 로고
    • Accelerated block-coordinate relaxation for regularized optimization
    • S. J. Wright, "Accelerated block-coordinate relaxation for regularized optimization," SIAM Journal on Optimization, vol. 22, no. 1, pp. 159-186, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.1 , pp. 159-186
    • Wright, S.J.1
  • 21
    • 84893409470 scopus 로고    scopus 로고
    • Decomposition by partial linearization: Parallel optimization of multi-agent systems
    • Feb
    • G. Scutari, F. Facchinei, P. Song, D. Palomar, and J.-S. Pang, "Decomposition by Partial linearization: Parallel optimization of multi-agent systems," IEEE Trans. Signal Process., vol. 62, pp. 641-656, Feb. 2014.
    • (2014) IEEE Trans. Signal Process. , vol.62 , pp. 641-656
    • Scutari, G.1    Facchinei, F.2    Song, P.3    Palomar, D.4    Pang, J.-S.5
  • 24
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • S. K. Shevade and S. S. Keerthi, "A simple and efficient algorithm for gene selection using sparse logistic regression," Bioinformatics, vol. 19, no. 17, pp. 2246-2253, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 26
    • 84884671011 scopus 로고    scopus 로고
    • Fast alternating linearization methods for minimizing the sum of two convex functions
    • D. Goldfarb, S. Ma, and K. Scheinberg, "Fast alternating linearization methods for minimizing the sum of two convex functions," Mathematical Programming, pp. 1-34, 2012.
    • (2012) Mathematical Programming , pp. 1-34
    • Goldfarb, D.1    Ma, S.2    Scheinberg, K.3
  • 30
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkagethresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkagethresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 31
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends-R in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.
    • (2011) Foundations and Trends-R in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.