메뉴 건너뛰기




Volumn , Issue , 2015, Pages 115-122

Robust and discriminative concept factorization for image representation

Author keywords

Concept factorization; Discriminability; Graph regularization; Image representation; Noise

Indexed keywords


EID: 84962338889     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2671188.2749317     Document Type: Conference Paper
Times cited : (18)

References (27)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 2006.
    • (2006) JMLR
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 4
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • E. Cands, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J ACM, 2011.
    • (2011) J ACM
    • Cands, E.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 9
    • 84887469134 scopus 로고    scopus 로고
    • Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation
    • J. Fan, Y. Gao, and H. Luo. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation. TIP, 2008.
    • (2008) TIP
    • Fan, J.1    Gao, Y.2    Luo, H.3
  • 13
    • 72949097899 scopus 로고    scopus 로고
    • Laplacian regularized d-optimal design for active learning and its application to image retrieval
    • X. He. Laplacian regularized d-optimal design for active learning and its application to image retrieval. TIP, 2010.
    • (2010) TIP
    • He, X.1
  • 14
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 15
    • 83055187059 scopus 로고    scopus 로고
    • Robust nonnegative matrix factorization using l21-norm
    • D. Kong, C. Ding, and H. Huang. Robust nonnegative matrix factorization using l21-norm. In CIKM, 2011.
    • (2011) CIKM
    • Kong, D.1    Ding, C.2    Huang, H.3
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. In Nature, 1999.
    • (1999) Nature
    • Lee, D.D.1    Seung, H.S.2
  • 21
    • 62249116488 scopus 로고    scopus 로고
    • Geometric mean for subspace selection
    • D. Tao, X. Li, X. Wu, and S. J. Maybank. Geometric mean for subspace selection. TPAMI, 2009.
    • (2009) TPAMI
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.J.4
  • 22
    • 0027980942 scopus 로고
    • Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque
    • M. W. O. E. Wachsmuth and D. I. Perrett. Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque. Cerebral Cortex, 4(5):509-522, 1994.
    • (1994) Cerebral Cortex , vol.4 , Issue.5 , pp. 509-522
    • Wachsmuth, M.W.O.E.1    Perrett, D.I.2
  • 23
    • 84962340100 scopus 로고    scopus 로고
    • Document clustering by concept factorization
    • W. Xu and Y. Gong. Document clustering by concept factorization. In Proc. of ACM RDIR, 2004.
    • (2004) Proc. of ACM RDIR
    • Xu, W.1    Gong, Y.2
  • 24
    • 85167619203 scopus 로고    scopus 로고
    • Nonnegative spectral clustering with discriminative regularization
    • Y. Yang, H. Shen, F. Nie, R. Ji, and X. Zhou. Nonnegative spectral clustering with discriminative regularization. In Proc. of 25th AAAI, 2011.
    • (2011) Proc. of 25th AAAI
    • Yang, Y.1    Shen, H.2    Nie, F.3    Ji, R.4    Zhou, X.5
  • 27
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. In NIPS, 2009.
    • (2009) NIPS
    • Yu, K.1    Zhang, T.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.