메뉴 건너뛰기




Volumn , Issue , 2011, Pages 673-682

Robust nonnegative matrix factorization using L21-norm

Author keywords

clustering; L21 norm; nmf; robust

Indexed keywords

CLUSTERING; CLUSTERING RESULTS; COMPUTATIONAL ALGORITHM; COMPUTATIONAL COSTS; CONVERGENCE ANALYSIS; DATA SETS; L21 NORM; LOSS FUNCTIONS; NMF; NONNEGATIVE MATRIX FACTORIZATION; REAL-WORLD APPLICATION; ROBUST; ROBUST FORMULATIONS;

EID: 83055187059     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063676     Document Type: Conference Paper
Times cited : (341)

References (25)
  • 2
    • 67049155384 scopus 로고    scopus 로고
    • Non-negative matrix factorization on manifold
    • D. Cai, X. He, X. Wu, and J. Han. Non-negative matrix factorization on manifold. In ICDM, pages 63-72, 2008.
    • (2008) ICDM , pp. 63-72
    • Cai, D.1    He, X.2    Wu, X.3    Han, J.4
  • 4
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • Cambridge, MA, MIT Press
    • I. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman divergences. In Advances in Neural Information Processing Systems 17, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17
    • Dhillon, I.1    Sra, S.2
  • 5
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. Proc. SIAM Data Mining Conf, 2005.
    • Proc. SIAM Data Mining Conf, 2005
    • Ding, C.1    He, X.2    Simon, H.3
  • 7
    • 33750737012 scopus 로고    scopus 로고
    • Nonnegative matrix factorization and probabilistic latent semantic indexing: Equivalence, chi-square statistic, and a hybrid method
    • C. Ding, T. Li, and W. Peng. Nonnegative matrix factorization and probabilistic latent semantic indexing: Equivalence, chi-square statistic, and a hybrid method. Proc. National Conf. Artificial Intelligence, 2006.
    • Proc. National Conf. Artificial Intelligence, 2006
    • Ding, C.1    Li, T.2    Peng, W.3
  • 8
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix tri-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In Proceedings of ACM SIGKDD, pages 126-135, 2006.
    • (2006) Proceedings of ACM SIGKDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 9
    • 34250776571 scopus 로고    scopus 로고
    • R1-pca: Rotational invariant l1-norm principal component analysis for robust subspace factorization (pdf file)
    • C. Ding, D. Zhou, X. He, and H. Zha. R1-pca: Rotational invariant l1-norm principal component analysis for robust subspace factorization (pdf file). Proc. Int'l Conf. Machine Learning (ICML), June 2006.
    • Proc. Int'l Conf. Machine Learning (ICML), June 2006
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 10
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. PAMI, 23:643-660, 2001.
    • (2001) PAMI , vol.23 , pp. 643-660
    • Georghiades, A.S.1    Belhumeur, P.N.2    Kriegman, D.J.3
  • 11
    • 70350697580 scopus 로고    scopus 로고
    • Co-clustering on manifolds
    • Q. Gu and J. Zhou. Co-clustering on manifolds. In KDD, pages 359-368, 2009.
    • (2009) KDD , pp. 359-368
    • Gu, Q.1    Zhou, J.2
  • 13
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2000.
    • (2000) NIPS
    • Lee, D.D.1    Seung, H.S.2
  • 14
    • 0035683536 scopus 로고    scopus 로고
    • Learning spatially localized, parts-based representation
    • S. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatially localized, parts-based representation. In CVPR, pages 207-212, 2001.
    • (2001) CVPR , pp. 207-212
    • Li, S.1    Hou, X.2    Zhang, H.3    Cheng, Q.4
  • 15
    • 49749129595 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
    • T. Li, C. Ding, and M. I. Jordan. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In ICDM, pages 577-582, 2007.
    • (2007) ICDM , pp. 577-582
    • Li, T.1    Ding, C.2    Jordan, M.I.3
  • 16
    • 78049372129 scopus 로고    scopus 로고
    • Improved minmax cut graph clustering with nonnegative relaxation
    • F. Nie, C. H. Q. Ding, D. Luo, and H. Huang. Improved minmax cut graph clustering with nonnegative relaxation. In ECML/PKDD, pages 451-466, 2010.
    • (2010) ECML/PKDD , pp. 451-466
    • Nie, F.1    Ding, C.H.Q.2    Luo, D.3    Huang, H.4
  • 17
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2,1-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding. Efficient and robust feature selection via joint l2,1-norms minimization. NIPS, 2010.
    • (2010) NIPS
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 18
    • 78049383727 scopus 로고    scopus 로고
    • Spectral embedded clustering
    • F. Nie, D. Xu, I. W. Tsang, and C. Zhang. Spectral embedded clustering. In IJCAI, pages 1181-1186, 2009.
    • (2009) IJCAI , pp. 1181-1186
    • Nie, F.1    Xu, D.2    Tsang, I.W.3    Zhang, C.4
  • 19
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 21
    • 84899026127 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming in support vector machines
    • MIT Press, Cambridge, MA
    • F. Sha, L. K. Saul, and D. D. Lee. Multiplicative updates for nonnegative quadratic programming in support vector machines. In Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Sha, F.1    Saul, L.K.2    Lee, D.D.3
  • 23
    • 53849111925 scopus 로고    scopus 로고
    • Semi-supervised clustering via matrix factorization
    • F. Wang, T. Li, and C. Zhang. Semi-supervised clustering via matrix factorization. In SDM, pages 1-12, 2008.
    • (2008) SDM , pp. 1-12
    • Wang, F.1    Li, T.2    Zhang, C.3
  • 24
    • 33748900059 scopus 로고    scopus 로고
    • Nonnegative matrix factorization and its applications in pattern recognition
    • DOI 10.1007/s11434-005-1109-6
    • N. Z. Weixiang Liu and Q. You. Nonnegative matrix factorization and its applications in pattern recognition. Chinese Science Bulletin, 51(1):7-18, 2006. (Pubitemid 44424559)
    • (2006) Chinese Science Bulletin , vol.51 , Issue.1 , pp. 7-18
    • Liu, W.1    Zheng, N.2    You, Q.3
  • 25
    • 0000827862 scopus 로고    scopus 로고
    • Positive matrix factorization applied to a curve resolution problem
    • Y.-L. Xie, P. Hopke, and P. Paatero. Positive matrix factorization applied to a curve resolution problem. Journal of Chemometrics, 12(6):357-364, 1999.
    • (1999) Journal of Chemometrics , vol.12 , Issue.6 , pp. 357-364
    • Xie, Y.-L.1    Hopke, P.2    Paatero, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.