-
1
-
-
1642529511
-
Metagenes and molecular pattern discovery using matrix factorization
-
DOI 10.1073/pnas.0308531101
-
J.-P. Brunet, P. Tamayo, T. Golub, and J. Mesirov. Metagenes and molecular pattern discovery using matrix factorization. Proc. Nat'l Academy of Sciences USA, 102(12):4164-4169, 2004. (Pubitemid 38405900)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.12
, pp. 4164-4169
-
-
Brunet, J.-P.1
Tamayo, P.2
Golub, T.R.3
Mesirov, J.P.4
-
2
-
-
67049155384
-
Non-negative matrix factorization on manifold
-
D. Cai, X. He, X. Wu, and J. Han. Non-negative matrix factorization on manifold. In ICDM, pages 63-72, 2008.
-
(2008)
ICDM
, pp. 63-72
-
-
Cai, D.1
He, X.2
Wu, X.3
Han, J.4
-
4
-
-
84864031935
-
Generalized nonnegative matrix approximations with Bregman divergences
-
Cambridge, MA, MIT Press
-
I. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman divergences. In Advances in Neural Information Processing Systems 17, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
-
-
Dhillon, I.1
Sra, S.2
-
5
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. Proc. SIAM Data Mining Conf, 2005.
-
Proc. SIAM Data Mining Conf, 2005
-
-
Ding, C.1
He, X.2
Simon, H.3
-
7
-
-
33750737012
-
Nonnegative matrix factorization and probabilistic latent semantic indexing: Equivalence, chi-square statistic, and a hybrid method
-
C. Ding, T. Li, and W. Peng. Nonnegative matrix factorization and probabilistic latent semantic indexing: Equivalence, chi-square statistic, and a hybrid method. Proc. National Conf. Artificial Intelligence, 2006.
-
Proc. National Conf. Artificial Intelligence, 2006
-
-
Ding, C.1
Li, T.2
Peng, W.3
-
8
-
-
33749575326
-
Orthogonal nonnegative matrix tri-factorizations for clustering
-
C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In Proceedings of ACM SIGKDD, pages 126-135, 2006.
-
(2006)
Proceedings of ACM SIGKDD
, pp. 126-135
-
-
Ding, C.1
Li, T.2
Peng, W.3
Park, H.4
-
10
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. PAMI, 23:643-660, 2001.
-
(2001)
PAMI
, vol.23
, pp. 643-660
-
-
Georghiades, A.S.1
Belhumeur, P.N.2
Kriegman, D.J.3
-
11
-
-
70350697580
-
Co-clustering on manifolds
-
Q. Gu and J. Zhou. Co-clustering on manifolds. In KDD, pages 359-368, 2009.
-
(2009)
KDD
, pp. 359-368
-
-
Gu, Q.1
Zhou, J.2
-
12
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
13
-
-
0001093042
-
Algorithms for non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2000.
-
(2000)
NIPS
-
-
Lee, D.D.1
Seung, H.S.2
-
14
-
-
0035683536
-
Learning spatially localized, parts-based representation
-
S. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatially localized, parts-based representation. In CVPR, pages 207-212, 2001.
-
(2001)
CVPR
, pp. 207-212
-
-
Li, S.1
Hou, X.2
Zhang, H.3
Cheng, Q.4
-
15
-
-
49749129595
-
Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
-
T. Li, C. Ding, and M. I. Jordan. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In ICDM, pages 577-582, 2007.
-
(2007)
ICDM
, pp. 577-582
-
-
Li, T.1
Ding, C.2
Jordan, M.I.3
-
16
-
-
78049372129
-
Improved minmax cut graph clustering with nonnegative relaxation
-
F. Nie, C. H. Q. Ding, D. Luo, and H. Huang. Improved minmax cut graph clustering with nonnegative relaxation. In ECML/PKDD, pages 451-466, 2010.
-
(2010)
ECML/PKDD
, pp. 451-466
-
-
Nie, F.1
Ding, C.H.Q.2
Luo, D.3
Huang, H.4
-
17
-
-
85135939782
-
Efficient and robust feature selection via joint l2,1-norms minimization
-
F. Nie, H. Huang, X. Cai, and C. Ding. Efficient and robust feature selection via joint l2,1-norms minimization. NIPS, 2010.
-
(2010)
NIPS
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
18
-
-
78049383727
-
Spectral embedded clustering
-
F. Nie, D. Xu, I. W. Tsang, and C. Zhang. Spectral embedded clustering. In IJCAI, pages 1181-1186, 2009.
-
(2009)
IJCAI
, pp. 1181-1186
-
-
Nie, F.1
Xu, D.2
Tsang, I.W.3
Zhang, C.4
-
19
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
20
-
-
2942588993
-
Text mining using non-negative matrix factorization
-
V. P. Pauca, F. Shahnaz, M. Berry, and R. Plemmons. Text mining using non-negative matrix factorization. In Proc. SIAM Int'l conf on Data Mining, pages 452-456, 2004.
-
(2004)
Proc. SIAM Int'l Conf on Data Mining
, pp. 452-456
-
-
Pauca, V.P.1
Shahnaz, F.2
Berry, M.3
Plemmons, R.4
-
21
-
-
84899026127
-
Multiplicative updates for nonnegative quadratic programming in support vector machines
-
MIT Press, Cambridge, MA
-
F. Sha, L. K. Saul, and D. D. Lee. Multiplicative updates for nonnegative quadratic programming in support vector machines. In Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
-
-
Sha, F.1
Saul, L.K.2
Lee, D.D.3
-
22
-
-
84898932317
-
Maximum margin matrix factorization
-
Cambridge, MA, MIT Press
-
N. Srebro, J. Rennie, and T. Jaakkola. Maximum margin matrix factorization. In Advances in Neural Information Processing Systems, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
-
-
Srebro, N.1
Rennie, J.2
Jaakkola, T.3
-
23
-
-
53849111925
-
Semi-supervised clustering via matrix factorization
-
F. Wang, T. Li, and C. Zhang. Semi-supervised clustering via matrix factorization. In SDM, pages 1-12, 2008.
-
(2008)
SDM
, pp. 1-12
-
-
Wang, F.1
Li, T.2
Zhang, C.3
-
24
-
-
33748900059
-
Nonnegative matrix factorization and its applications in pattern recognition
-
DOI 10.1007/s11434-005-1109-6
-
N. Z. Weixiang Liu and Q. You. Nonnegative matrix factorization and its applications in pattern recognition. Chinese Science Bulletin, 51(1):7-18, 2006. (Pubitemid 44424559)
-
(2006)
Chinese Science Bulletin
, vol.51
, Issue.1
, pp. 7-18
-
-
Liu, W.1
Zheng, N.2
You, Q.3
-
25
-
-
0000827862
-
Positive matrix factorization applied to a curve resolution problem
-
Y.-L. Xie, P. Hopke, and P. Paatero. Positive matrix factorization applied to a curve resolution problem. Journal of Chemometrics, 12(6):357-364, 1999.
-
(1999)
Journal of Chemometrics
, vol.12
, Issue.6
, pp. 357-364
-
-
Xie, Y.-L.1
Hopke, P.2
Paatero, P.3
|