-
1
-
-
65649108558
-
A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival
-
Singh A, Greninger P, Rhodes D, et al. A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell 2009;15:489-500.
-
(2009)
Cancer Cell
, vol.15
, pp. 489-500
-
-
Singh, A.1
Greninger, P.2
Rhodes, D.3
-
2
-
-
84891899963
-
Climbing RAS, the everest of oncogenes
-
Russo M, Di Nicolantonio F, Bardelli A. Climbing RAS, the everest of oncogenes. Cancer Discov 2014;4:19-21.
-
(2014)
Cancer Discov
, vol.4
, pp. 19-21
-
-
Russo, M.1
Di, N.F.2
Bardelli, A.3
-
3
-
-
84857735480
-
PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network
-
Ying H, Elpek KG, Vinjamoori A, et al. PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov 2011;1:158-69.
-
(2011)
Cancer Discov
, vol.1
, pp. 158-169
-
-
Ying, H.1
Elpek, K.G.2
Vinjamoori, A.3
-
4
-
-
84876437832
-
Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer
-
Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 2013;23:406-20.
-
(2013)
Cancer Cell
, vol.23
, pp. 406-420
-
-
Eser, S.1
Reiff, N.2
Messer, M.3
-
5
-
-
84866007085
-
EGF receptor is required for KRAS-induced pancreatic tumorigenesis
-
Ardito CM, Gruner BM, Takeuchi KK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 2012;22:304-17.
-
(2012)
Cancer Cell
, vol.22
, pp. 304-317
-
-
Ardito, C.M.1
Gruner, B.M.2
Takeuchi, K.K.3
-
6
-
-
84866035571
-
EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma
-
Navas C, Hernandez-Porras I, Schuhmacher AJ, et al. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 2012;22:318-30.
-
(2012)
Cancer Cell
, vol.22
, pp. 318-330
-
-
Navas, C.1
Hernandez-Porras, I.2
Schuhmacher, A.J.3
-
7
-
-
77949655175
-
TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity
-
Liang MC, Ma J, Chen L, et al. TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity. Oncogene 2010;29:1588-97.
-
(2010)
Oncogene
, vol.29
, pp. 1588-1597
-
-
Liang, M.C.1
Ma, J.2
Chen, L.3
-
8
-
-
84876149439
-
TSC1 involvement in bladder cancer: Diverse effects and therapeutic implications
-
Guo Y, Chekaluk Y, Zhang J, et al. TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. J Pathol 2013;230:17-27.
-
(2013)
J Pathol
, vol.230
, pp. 17-27
-
-
Guo, Y.1
Chekaluk, Y.2
Zhang, J.3
-
9
-
-
79953315567
-
Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis
-
Kennedy AL, Morton JP, Manoharan I, et al. Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell 2011;42:36-49.
-
(2011)
Mol Cell
, vol.42
, pp. 36-49
-
-
Kennedy, A.L.1
Morton, J.P.2
Manoharan, I.3
-
10
-
-
77954478305
-
Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: Results of two phase II studies
-
Javle MM, Shroff RT, Xiong H, et al. Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: Results of two phase II studies. BMC Cancer 2010;10:368.
-
(2010)
BMC Cancer
, vol.10
, pp. 368
-
-
Javle, M.M.1
Shroff, R.T.2
Xiong, H.3
-
11
-
-
84874310577
-
Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells
-
Soares HP, Ni Y, Kisfalvi K, et al. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS ONE 2013;8:e57289.
-
(2013)
PLoS One
, vol.8
, pp. e57289
-
-
Soares, H.P.1
Ni, Y.2
Kisfalvi, K.3
-
12
-
-
58249085318
-
Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer
-
Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 2009;27:193-8.
-
(2009)
J Clin Oncol
, vol.27
, pp. 193-198
-
-
Wolpin, B.M.1
Hezel, A.F.2
Abrams, T.3
-
13
-
-
84905579496
-
Targeting mTOR dependency in pancreatic cancer
-
Morran DC, Wu J, Jamieson NB, et al. Targeting mTOR dependency in pancreatic cancer. Gut 2014;63:1481-9.
-
(2014)
Gut
, vol.63
, pp. 1481-1489
-
-
Morran, D.C.1
Wu, J.2
Jamieson, N.B.3
-
14
-
-
0028875562
-
Allelotype of pancreatic adenocarcinoma using xenograft enrichment
-
Hahn SA, Seymour AB, Hoque AT, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res 1995;55:4670-5.
-
(1995)
Cancer Res
, vol.55
, pp. 4670-4675
-
-
Hahn, S.A.1
Seymour, A.B.2
Hoque, A.T.3
-
15
-
-
84859583855
-
Global microRNA expression profiling of microdissected tissues identifies MIR-135b as a novel biomarker for pancreatic ductal adenocarcinoma
-
Munding JB, Adai AT, Maghnouj A, et al. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Int J Cancer 2012;131:E86-E95.
-
(2012)
Int J Cancer
, vol.131
, pp. E86-E95
-
-
Munding, J.B.1
Adai, A.T.2
Maghnouj, A.3
-
16
-
-
52149123619
-
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
-
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-6.
-
(2008)
Science
, vol.321
, pp. 1801-1806
-
-
Jones, S.1
Zhang, X.2
Parsons, D.W.3
-
17
-
-
9144266295
-
Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
-
Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437-50.
-
(2003)
Cancer Cell
, vol.4
, pp. 437-450
-
-
Hingorani, S.R.1
Petricoin, E.F.2
Maitra, A.3
-
18
-
-
34547645033
-
Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer
-
Ma L, Teruya-Feldstein J, Bonner P, et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007;67:7106-12.
-
(2007)
Cancer Res
, vol.67
, pp. 7106-7112
-
-
Ma, L.1
Teruya-Feldstein, J.2
Bonner, P.3
-
19
-
-
24944572259
-
Pten constrains centroacinar cell expansion and malignant transformation in the pancreas
-
Stanger BZ, Stiles B, Lauwers GY, et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 2005;8:185-95.
-
(2005)
Cancer Cell
, vol.8
, pp. 185-195
-
-
Stanger, B.Z.1
Stiles, B.2
Lauwers, G.Y.3
-
20
-
-
79959255898
-
Cten is targeted by Kras signalling to regulate cell motility in the colon and pancreas
-
Al-Ghamdi S, Albasri A, Cachat J, et al. Cten is targeted by Kras signalling to regulate cell motility in the colon and pancreas. PLoS ONE 2011;6:e20919.
-
(2011)
PLoS One
, vol.6
, pp. e20919
-
-
Al-Ghamdi, S.1
Albasri, A.2
Cachat, J.3
-
21
-
-
84872070076
-
C-terminal tensin-like gene functions as an oncogene and promotes cell motility in pancreatic cancer
-
Al-Ghamdi S, Cachat J, Albasri A, et al. C-Terminal Tensin-like gene functions as an oncogene and promotes cell motility in pancreatic cancer. Pancreas 2013;42:135-40.
-
(2013)
Pancreas
, vol.42
, pp. 135-140
-
-
Al-Ghamdi, S.1
Cachat, J.2
Albasri, A.3
-
22
-
-
84855946746
-
KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma
-
Ling J, Kang Y, Zhao R, et al. KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 2012;21:105-20.
-
(2012)
Cancer Cell
, vol.21
, pp. 105-120
-
-
Ling, J.1
Kang, Y.2
Zhao, R.3
-
23
-
-
84865426808
-
Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2
-
Panarelli NC, Yantiss RK, Yeh MM, et al. Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol 2012;138:211-22.
-
(2012)
Am J Clin Pathol
, vol.138
, pp. 211-222
-
-
Panarelli, N.C.1
Yantiss, R.K.2
Yeh, M.M.3
-
24
-
-
57749109121
-
Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system
-
Su MC, Yuan RH, Lin CY, et al. Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod Pathol 2008;21:1379-86.
-
(2008)
Mod Pathol
, vol.21
, pp. 1379-1386
-
-
Su, M.C.1
Yuan, R.H.2
Lin, C.Y.3
-
25
-
-
33646886778
-
Comprehensive analysis of HE4 expression in normal and malignant human tissues
-
Galgano MT, Hampton GM, Frierson HF Jr. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod Pathol 2006;19:847-53.
-
(2006)
Mod Pathol
, vol.19
, pp. 847-853
-
-
Galgano, M.T.1
Hampton, G.M.2
Frierson, H.F.3
-
26
-
-
35448969671
-
Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit
-
Takehara A, Hosokawa M, Eguchi H, et al. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res 2007;67:9704-12.
-
(2007)
Cancer Res
, vol.67
, pp. 9704-9712
-
-
Takehara, A.1
Hosokawa, M.2
Eguchi, H.3
-
27
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, Kimmelman AC, Lyssiotis CA, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012;149:656-70.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
-
28
-
-
77749292153
-
Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma
-
Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010;102:340-51.
-
(2010)
J Natl Cancer Inst
, vol.102
, pp. 340-351
-
-
Rasheed, Z.A.1
Yang, J.2
Wang, Q.3
-
29
-
-
79959540301
-
Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer
-
Kahlert C, Bergmann F, Beck J, et al. Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer 2011;11:275.
-
(2011)
BMC Cancer
, vol.11
, pp. 275
-
-
Kahlert, C.1
Bergmann, F.2
Beck, J.3
-
30
-
-
84878151308
-
Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3
-
Mao P, Joshi K, Li J, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA 2013;110:8644-9.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 8644-8649
-
-
Mao, P.1
Joshi, K.2
Li, J.3
-
31
-
-
84859947197
-
Sleeping beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma
-
Mann KM, Ward JM, Yew CC, et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2012;109:5934-41.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5934-5941
-
-
Mann, K.M.1
Ward, J.M.2
Yew, C.C.3
-
32
-
-
84861990162
-
The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma
-
Perez-Mancera PA, Rust AG, van der Weyden L, et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 2012;486:266-70.
-
(2012)
Nature
, vol.486
, pp. 266-270
-
-
Perez-Mancera, P.A.1
Rust, A.G.2
Van Der Weyden, L.3
-
33
-
-
84898614449
-
Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling
-
Weissmueller S, Manchado E, Saborowski M, et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 2014;157:382-94.
-
(2014)
Cell
, vol.157
, pp. 382-394
-
-
Weissmueller, S.1
Manchado, E.2
Saborowski, M.3
-
34
-
-
76249084919
-
The aldehyde dehydrogenase gene superfamily resource center
-
Black W, Vasiliou V. The aldehyde dehydrogenase gene superfamily resource center. Hum Genomics 2009;4:136-42.
-
(2009)
Hum Genomics
, vol.4
, pp. 136-142
-
-
Black, W.1
Vasiliou, V.2
-
35
-
-
79955593909
-
Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform
-
Marcato P, Dean CA, Giacomantonio CA, et al. Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011;10:1378-84.
-
(2011)
Cell Cycle
, vol.10
, pp. 1378-1384
-
-
Marcato, P.1
Dean, C.A.2
Giacomantonio, C.A.3
-
36
-
-
76249094159
-
Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas
-
Rovira M, Scott SG, Liss AS, et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA 2010;107:75-80.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 75-80
-
-
Rovira, M.1
Scott, S.G.2
Liss, A.S.3
-
37
-
-
84872398701
-
ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools
-
Ioannou M, Serafimidis I, Arnes L, et al. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol 2013;374:153-63.
-
(2013)
Dev Biol
, vol.374
, pp. 153-163
-
-
Ioannou, M.1
Serafimidis, I.2
Arnes, L.3
-
38
-
-
16244406880
-
Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development
-
Molotkov A, Molotkova N, Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn 2005;232:950-7.
-
(2005)
Dev Dyn
, vol.232
, pp. 950-957
-
-
Molotkov, A.1
Molotkova, N.2
Duester, G.3
|