메뉴 건너뛰기




Volumn 9597, Issue , 2016, Pages 123-137

Automating biomedical data science through tree-based pipeline optimization

Author keywords

Data science; Genetic programming; Hyperparameter optimization; Machine learning; Pipeline optimization

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); GENETIC ALGORITHMS; GENETIC PROGRAMMING; LEARNING SYSTEMS; TREES (MATHEMATICS);

EID: 84961720030     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-31204-0_9     Document Type: Conference Paper
Times cited : (292)

References (21)
  • 1
    • 84961723018 scopus 로고    scopus 로고
    • November
    • RJMetrics: The State of Data Science, November 2015. https://rjmetrics.com/resources/reports/the-state-of-data-science/
    • (2015) The State of Data Science
  • 2
    • 79951563885 scopus 로고    scopus 로고
    • Computer-automated evolution of an Xband antenna for NASA’s space technology 5 mission
    • Hornby, G.S., Lohn, J.D., Linden, D.S.: Computer-automated evolution of an Xband antenna for NASA’s space technology 5 mission. Evol. Comput. 19(1), 1–23 (2011)
    • (2011) Evol. Comput , vol.19 , Issue.1 , pp. 1-23
    • Hornby, G.S.1    Lohn, J.D.2    Linden, D.S.3
  • 7
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 8
    • 84869201485 scopus 로고    scopus 로고
    • Practical bayesian optimization of machine learning algorithms
    • In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.), Curran Associates, Inc
    • Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 2951–2959. Curran Associates, Inc. (2012)
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 12
    • 84895930198 scopus 로고    scopus 로고
    • A systemlevel pathway-phenotype association analysis using synthetic feature random forest
    • Pan, Q., Hu, T., Malley, J.D., Andrew, A.S., Karagas, M.R., Moore, J.H.: A systemlevel pathway-phenotype association analysis using synthetic feature random forest. Genet. Epidemiol. 38(3), 209–219 (2014)
    • (2014) Genet. Epidemiol , vol.38 , Issue.3 , pp. 209-219
    • Pan, Q.1    Hu, T.2    Malley, J.D.3    Rew, A.S.4    Karagas, M.R.5    Moore, J.H.6
  • 14
    • 84866545018 scopus 로고    scopus 로고
    • Predicting the difficulty of pure, strict, epistatic models: Metrics for simulated model selection
    • Urbanowicz, R.J., Kiralis, J., Fisher, J.M., Moore, J.H.: Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection. BioData Min. 5(1), 1–13 (2012)
    • (2012) Biodata Min , vol.5 , Issue.1 , pp. 1-13
    • Urbanowicz, R.J.1    Kiralis, J.2    Fisher, J.M.3    Moore, J.H.4
  • 15
    • 84866792294 scopus 로고    scopus 로고
    • GAMETES: A fast, direct algorithm for generating pure, strict, epistatic models with random architectures
    • Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M., Moore, J.H.: GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min. 5(1), 1–14 (2012)
    • (2012) Biodata Min , vol.5 , Issue.1 , pp. 1-14
    • Urbanowicz, R.J.1    Kiralis, J.2    Sinnott-Armstrong, N.A.3    Heberling, T.4    Fisher, J.M.5    Moore, J.H.6
  • 16
    • 84898683617 scopus 로고    scopus 로고
    • Genetic analysis of prostate cancer using computational evolution, pareto-optimization and post-processing
    • In: Riolo, R., Vladislavleva, E., Ritchie, M.D., Moore, J.H. (eds.), Springer, New York
    • Moore, J.H., Hill, D.P., Sulovari, A., Kidd, L.C.: Genetic analysis of prostate cancer using computational evolution, pareto-optimization and post-processing. In: Riolo, R., Vladislavleva, E., Ritchie, M.D., Moore, J.H. (eds.) Genetic Programming Theory and Practice X, pp. 87–101. Springer, New York (2013)
    • (2013) Genetic Programming Theory and Practice X , pp. 87-101
    • Moore, J.H.1    Hill, D.P.2    Sulovari, A.3    Kidd, L.C.4
  • 19
    • 33745727034 scopus 로고    scopus 로고
    • Multi-objective optimization using genetic algorithms: A tutorial
    • Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)
    • (2006) Reliab. Eng. Syst. Saf , vol.91 , Issue.9 , pp. 992-1007
    • Konak, A.1    Coit, D.W.2    Smith, A.E.3
  • 20
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
    • (2002) IEEE Trans. Evol. Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 21
    • 69449088874 scopus 로고    scopus 로고
    • Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions
    • Greene, C.S., Penrod, N.M., Kiralis, J., Moore, J.H.: Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min. 2(1), 1 (2009)
    • (2009) Biodata Min , vol.2 , Issue.1 , pp. 1
    • Greene, C.S.1    Penrod, N.M.2    Kiralis, J.3    Moore, J.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.