-
1
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
-
Baar, K., A. R. Wende, T. E. Jones, M. Marison, L. A. Nolte, and M. Chen, et al. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16:1879-1886.
-
(2002)
FASEB J.
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
Marison, M.4
Nolte, L.A.5
Chen, M.6
-
2
-
-
45149108625
-
Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake
-
(1985)
-
Calvo, J. A., T. G. Daniels, X. Wang, A. Paul, J. Lin, and B. M. Spiegelman, et al. 2008. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J. Appl. Physiol. (1985) 104:1304-1312.
-
(2008)
J. Appl. Physiol.
, vol.104
, pp. 1304-1312
-
-
Calvo, J.A.1
Daniels, T.G.2
Wang, X.3
Paul, A.4
Lin, J.5
Spiegelman, B.M.6
-
3
-
-
77749264581
-
PGC-1alpha plays a functional role in exerciseinduced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle
-
Geng, T., P. Li, M. Okutsu, X. Yin, J. Kwek, and M. Zhang, et al. 2010. PGC-1alpha plays a functional role in exerciseinduced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am. J. Physiol. Cell Physiol. 298:C572-C579.
-
(2010)
Am. J. Physiol. Cell Physiol.
, vol.298
, pp. C572-C579
-
-
Geng, T.1
Li, P.2
Okutsu, M.3
Yin, X.4
Kwek, J.5
Zhang, M.6
-
4
-
-
82855169509
-
Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles
-
Grumati, P., L. Coletto, A. Schiavinato, S. Castagnaro, E. Bertaggia, and M. Sandri, et al. 2011. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 7:1415-1423.
-
(2011)
Autophagy
, vol.7
, pp. 1415-1423
-
-
Grumati, P.1
Coletto, L.2
Schiavinato, A.3
Castagnaro, S.4
Bertaggia, E.5
Sandri, M.6
-
5
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
He, C., M. C. Bassik, V. Moresi, K. Sun, Y. Wei, and Z. Zou, et al. 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511-515.
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
Bassik, M.C.2
Moresi, V.3
Sun, K.4
Wei, Y.5
Zou, Z.6
-
6
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa, N., T. Hara, T. Kaizuka, C. Kishi, A. Takamura, and Y. Miura, et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20: 1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
-
7
-
-
84885626734
-
Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state
-
Jamart, C., D. Naslain, H. Gilson, and M. Francaux. 2013. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am. J. Physiol. Endocrinol. Metab. 305:E964-E974.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.305
, pp. E964-E974
-
-
Jamart, C.1
Naslain, D.2
Gilson, H.3
Francaux, M.4
-
8
-
-
3242888703
-
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
-
Kabeya, Y., N. Mizushima, A. Yamamoto, S. Oshitani-Okamoto, Y. Ohsumi, and T. Yoshimori. 2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117:2805-2812.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 2805-2812
-
-
Kabeya, Y.1
Mizushima, N.2
Yamamoto, A.3
Oshitani-Okamoto, S.4
Ohsumi, Y.5
Yoshimori, T.6
-
9
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., M. Kundu, B. Viollet, and K. L. Guan. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
10
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling
-
Lee, J., S. Giordano, and J. Zhang. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441:523-540.
-
(2012)
Biochem. J.
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
11
-
-
38949196761
-
PGC-1alpha is not mandatory for exercise-and training-induced adaptive gene responses in mouse skeletal muscle
-
Leick, L., J. F. Wojtaszewski, S. T. Johansen, K. Kiilerich, G. Comes, and Y. Hellsten, et al. 2008. PGC-1alpha is not mandatory for exercise-and training-induced adaptive gene responses in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 294:E463-E474.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.294
, pp. E463-E474
-
-
Leick, L.1
Wojtaszewski, J.F.2
Johansen, S.T.3
Kiilerich, K.4
Comes, G.5
Hellsten, Y.6
-
12
-
-
0036084568
-
Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains
-
(1985)
-
Lerman, I., B. C. Harrison, K. Freeman, T. E. Hewett, D. L. Allen, and J. Robbins, et al. 2002. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J. Appl. Physiol. (1985) 92:2245-2255.
-
(2002)
J. Appl. Physiol.
, vol.92
, pp. 2245-2255
-
-
Lerman, I.1
Harrison, B.C.2
Freeman, K.3
Hewett, T.E.4
Allen, D.L.5
Robbins, J.6
-
13
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin, J., H. Wu, P. T. Tarr, C. Y. Zhang, Z. Wu, and O. Boss, et al. 2002. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
Boss, O.6
-
14
-
-
84885145785
-
Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance
-
Lira, V. A., M. Okutsu, M. Zhang, N. P. Greene, R. C. Laker, and D. S. Breen, et al. 2013. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 27:4184-4193.
-
(2013)
FASEB J.
, vol.27
, pp. 4184-4193
-
-
Lira, V.A.1
Okutsu, M.2
Zhang, M.3
Greene, N.P.4
Laker, R.C.5
Breen, D.S.6
-
15
-
-
84919765112
-
Autophagy is not required to sustain exercise and PRKAA1/ AMPK activity but is important to prevent mitochondrial damage during physical activity
-
Lo, V. F., S. Carnio, A. Vainshtein, and M. Sandri. 2014. Autophagy is not required to sustain exercise and PRKAA1/ AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 10:1883-1894.
-
(2014)
Autophagy
, vol.10
, pp. 1883-1894
-
-
Lo, V.F.1
Carnio, S.2
Vainshtein, A.3
Sandri, M.4
-
17
-
-
30344484849
-
Gene expression in human skeletal muscle: Alternative normalization method and effect of repeated biopsies
-
Lundby, C., N. Nordsborg, K. Kusuhara, K. M. Kristensen, P. D. Neufer, and H. Pilegaard. 2005. Gene expression in human skeletal muscle: alternative normalization method and effect of repeated biopsies. Eur. J. Appl. Physiol. 95:351-360.
-
(2005)
Eur. J. Appl. Physiol.
, vol.95
, pp. 351-360
-
-
Lundby, C.1
Nordsborg, N.2
Kusuhara, K.3
Kristensen, K.M.4
Neufer, P.D.5
Pilegaard, H.6
-
18
-
-
24644478044
-
Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise
-
Mahoney, D. J., G. Parise, S. Melov, A. Safdar, and M. A. Tarnopolsky. 2005. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 19:1498-1500.
-
(2005)
FASEB J.
, vol.19
, pp. 1498-1500
-
-
Mahoney, D.J.1
Parise, G.2
Melov, S.3
Safdar, A.4
Tarnopolsky, M.A.5
-
19
-
-
35848967804
-
How to interpret LC3 immunoblotting
-
Mizushima, N., and T. Yoshimori. 2007. How to interpret LC3 immunoblotting. Autophagy 3:542-545.
-
(2007)
Autophagy
, vol.3
, pp. 542-545
-
-
Mizushima, N.1
Yoshimori, T.2
-
20
-
-
84928340082
-
Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle
-
(1985)
-
Moller, A. B., M. H. Vendelbo, B. Christensen, B. F. Clasen, A. M. Bak, and J. O. Jorgensen, et al. 2015. Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle. J. Appl. Physiol. (1985) 118:971-979.
-
(2015)
J. Appl. Physiol.
, vol.118
, pp. 971-979
-
-
Moller, A.B.1
Vendelbo, M.H.2
Christensen, B.3
Clasen, B.F.4
Bak, A.M.5
Jorgensen, J.O.6
-
21
-
-
84937523723
-
Understanding the cellular and molecular mechanisms of physical activity-induced health benefits
-
Neufer, P. D., M. M. Bamman, D. M. Muoio, C. Bouchard, D. M. Cooper, and B. H. Goodpaster, et al. 2015. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 22:4-11.
-
(2015)
Cell Metab.
, vol.22
, pp. 4-11
-
-
Neufer, P.D.1
Bamman, M.M.2
Muoio, D.M.3
Bouchard, C.4
Cooper, D.M.5
Goodpaster, B.H.6
-
22
-
-
84857574974
-
Skeletal muscle PGC-1alpha is required for maintaining an acute LPS-induced TNFalpha response
-
Olesen, J., S. Larsson, N. Iversen, S. Yousafzai, Y. Hellsten, and H. Pilegaard. 2012. Skeletal muscle PGC-1alpha is required for maintaining an acute LPS-induced TNFalpha response. PLoS ONE 7:e32222.
-
(2012)
PLoS ONE
, vol.7
-
-
Olesen, J.1
Larsson, S.2
Iversen, N.3
Yousafzai, S.4
Hellsten, Y.5
Pilegaard, H.6
-
23
-
-
84884128911
-
Role of PGC-1alpha in exercise training-and resveratrol-induced prevention of age-associated inflammation
-
Olesen, J., S. Ringholm, M. M. Nielsen, C. T. Brandt, J. T. Pedersen, and J. F. Halling, et al. 2013. Role of PGC-1alpha in exercise training-and resveratrol-induced prevention of age-associated inflammation. Exp. Gerontol. 48:1274-1284.
-
(2013)
Exp. Gerontol.
, vol.48
, pp. 1274-1284
-
-
Olesen, J.1
Ringholm, S.2
Nielsen, M.M.3
Brandt, C.T.4
Pedersen, J.T.5
Halling, J.F.6
-
24
-
-
78649710608
-
Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle
-
Perry, C. G., J. Lally, G. P. Holloway, G. J. Heigenhauser, A. Bonen, and L. L. Spriet. 2010. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 588:4795-4810.
-
(2010)
J. Physiol.
, vol.588
, pp. 4795-4810
-
-
Perry, C.G.1
Lally, J.2
Holloway, G.P.3
Heigenhauser, G.J.4
Bonen, A.5
Spriet, L.L.6
-
25
-
-
0033679675
-
Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise
-
Pilegaard, H., G. A. Ordway, B. Saltin, and P. D. Neufer. 2000. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am. J. Physiol. Endocrinol. Metab. 279:E806-E814.
-
(2000)
Am. J. Physiol. Endocrinol. Metab.
, vol.279
, pp. E806-E814
-
-
Pilegaard, H.1
Ordway, G.A.2
Saltin, B.3
Neufer, P.D.4
-
26
-
-
0037322888
-
Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle
-
Pilegaard, H., B. Saltin, and P. D. Neufer. 2003. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J. Physiol. 546:851-858.
-
(2003)
J. Physiol.
, vol.546
, pp. 851-858
-
-
Pilegaard, H.1
Saltin, B.2
Neufer, P.D.3
-
27
-
-
33845540481
-
PDH-E1alpha dephosphorylation and activation in human skeletal muscle during exercise: Effect of intralipid infusion
-
Pilegaard, H., J. B. Birk, M. Sacchetti, M. Mourtzakis, D. G. Hardie, and G. Stewart, et al. 2006. PDH-E1alpha dephosphorylation and activation in human skeletal muscle during exercise: effect of intralipid infusion. Diabetes 55:3020-3027.
-
(2006)
Diabetes
, vol.55
, pp. 3020-3027
-
-
Pilegaard, H.1
Birk, J.B.2
Sacchetti, M.3
Mourtzakis, M.4
Hardie, D.G.5
Stewart, G.6
-
28
-
-
80051667908
-
Exercise-induced oxidative stress in humans: Cause and consequences
-
Powers, S. K., W. B. Nelson, and M. B. Hudson. 2011. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic. Biol. Med. 51:942-950.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 942-950
-
-
Powers, S.K.1
Nelson, W.B.2
Hudson, M.B.3
-
29
-
-
84884167145
-
Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1alpha
-
Ringholm, S., J. Olesen, J. T. Pedersen, C. T. Brandt, J. F. Halling, and Y. Hellsten, et al. 2013. Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1alpha. Exp. Gerontol. 48:1311-1318.
-
(2013)
Exp. Gerontol.
, vol.48
, pp. 1311-1318
-
-
Ringholm, S.1
Olesen, J.2
Pedersen, J.T.3
Brandt, C.T.4
Halling, J.F.5
Hellsten, Y.6
-
30
-
-
77952626944
-
Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy
-
Sandri, M. 2010. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am. J. Physiol. Cell Physiol. 298:C1291-C1297.
-
(2010)
Am. J. Physiol. Cell Physiol.
, vol.298
, pp. C1291-C1297
-
-
Sandri, M.1
-
31
-
-
84940417303
-
Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation
-
Schwalm, C., C. Jamart, N. Benoit, D. Naslain, C. Premont, and J. Prevet, et al. 2015. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J. 29:3515-3526.
-
(2015)
FASEB J.
, vol.29
, pp. 3515-3526
-
-
Schwalm, C.1
Jamart, C.2
Benoit, N.3
Naslain, D.4
Premont, C.5
Prevet, J.6
-
32
-
-
84930858968
-
Role of PGC-1alpha during acute exercise-induced autophagy and mitophagy in skeletal muscle
-
Vainshtein, A., L. D. Tryon, M. Pauly, and D. A. Hood. 2015. Role of PGC-1alpha during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am. J. Physiol. Cell Physiol. 308:C710-C719.
-
(2015)
Am. J. Physiol. Cell Physiol.
, vol.308
, pp. C710-C719
-
-
Vainshtein, A.1
Tryon, L.D.2
Pauly, M.3
Hood, D.A.4
-
33
-
-
0029978799
-
Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise
-
Winder, W. W., and D. G. Hardie. 1996. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270:E299-E304.
-
(1996)
Am. J. Physiol.
, vol.270
, pp. E299-E304
-
-
Winder, W.W.1
Hardie, D.G.2
-
34
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu, Z., P. Puigserver, U. Andersson, C. Zhang, G. Adelmant, and V. Mootha, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
-
35
-
-
84862863393
-
Exercise traininginduced regulation of mitochondrial quality
-
Yan, Z., V. A. Lira, and N. P. Greene. 2012. Exercise traininginduced regulation of mitochondrial quality. Exerc. Sport Sci. Rev. 40:159-164.
-
(2012)
Exerc. Sport Sci. Rev.
, vol.40
, pp. 159-164
-
-
Yan, Z.1
Lira, V.A.2
Greene, N.P.3
|