메뉴 건너뛰기




Volumn 82, Issue , 2016, Pages 28-35

Ensembles of dense and dense sampling descriptors for the HEp-2 cells classification problem

Author keywords

Bag of features; Ensemble; HEp 2 cell classification; Machine learning; Support vector machine; Texture descriptors

Indexed keywords

CELLS; DIAGNOSIS; FLUORESCENCE; LEARNING SYSTEMS; MATLAB; PATTERN RECOGNITION SYSTEMS; STATISTICAL TESTS; SUPPORT VECTOR MACHINES; TEXTURES;

EID: 84961195136     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2016.01.026     Document Type: Article
Times cited : (6)

References (65)
  • 1
    • 84922374858 scopus 로고    scopus 로고
    • Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease
    • [1] Parks, C.G., Miller, F.W., Pollard, K.M., Selmi, C., Germolec, D., Joyce, K., et al. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int. J. Mol. Sci. 15 (2014), 14269–14297.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 14269-14297
    • Parks, C.G.1    Miller, F.W.2    Pollard, K.M.3    Selmi, C.4    Germolec, D.5    Joyce, K.6
  • 2
    • 0031240055 scopus 로고    scopus 로고
    • Epidemiology and estimated population burden of selected autoimmune diseases in the United States
    • [2] Jacobson, D., Gange, S., Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84 (1997), 223–243.
    • (1997) Clin. Immunol. Immunopathol. , vol.84 , pp. 223-243
    • Jacobson, D.1    Gange, S.2
  • 4
    • 71649086164 scopus 로고    scopus 로고
    • Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases
    • [4] Cooper, G.S., Bynum, M.L.K., Somers, E.C., Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33 (2009), 197–207.
    • (2009) J. Autoimmun. , vol.33 , pp. 197-207
    • Cooper, G.S.1    Bynum, M.L.K.2    Somers, E.C.3
  • 5
    • 0141819043 scopus 로고    scopus 로고
    • The epidemiology of autoimmune diseases
    • [5] Cooper, G., Stroehla, B., The epidemiology of autoimmune diseases. Autoimmun. Rev. 2 (2003), 119–125.
    • (2003) Autoimmun. Rev. , vol.2 , pp. 119-125
    • Cooper, G.1    Stroehla, B.2
  • 6
    • 0037103187 scopus 로고    scopus 로고
    • Evidence-based guidelines for the use of immunologic tests: Antinuclear antibody testing
    • [6] Solomon, D., Kavanaugh, A., Schur, P., Evidence-based guidelines for the use of immunologic tests: Antinuclear antibody testing. Arthritis Rheumatol. 47 (2002), 434–444.
    • (2002) Arthritis Rheumatol. , vol.47 , pp. 434-444
    • Solomon, D.1    Kavanaugh, A.2    Schur, P.3
  • 7
    • 77955462255 scopus 로고    scopus 로고
    • ANA screening: An old test with new recommendations
    • [7] Meroni, P., Schur, P., ANA screening: An old test with new recommendations. Ann. Rheum. Dis. 69 (2010), 1420–1422.
    • (2010) Ann. Rheum. Dis. , vol.69 , pp. 1420-1422
    • Meroni, P.1    Schur, P.2
  • 8
    • 0037087505 scopus 로고    scopus 로고
    • Clinical utility of common serum rheumatologic tests
    • [8] Lane, S.K., Gravel, J.W., Clinical utility of common serum rheumatologic tests. Am. Fam. Physician 65 (2002), 1073–1080.
    • (2002) Am. Fam. Physician , vol.65 , pp. 1073-1080
    • Lane, S.K.1    Gravel, J.W.2
  • 9
    • 17144447571 scopus 로고    scopus 로고
    • Variability between methods to determine ANA, anti-dsDNA and anti-ENA autoantibodies: A collaborative study with the biomedical industry
    • [9] Bizzaro, N., Tozzoli, R., Tonutti, E., Variability between methods to determine ANA, anti-dsDNA and anti-ENA autoantibodies: A collaborative study with the biomedical industry. J. Immunol. Methods 219 (1998), 99–107.
    • (1998) J. Immunol. Methods , vol.219 , pp. 99-107
    • Bizzaro, N.1    Tozzoli, R.2    Tonutti, E.3
  • 10
    • 84907421490 scopus 로고    scopus 로고
    • Pattern recognition in stained HEp-2 cells: Where are we now?
    • [10] Foggia, P., Percannella, G., Saggese, A., Vento, M., Pattern recognition in stained HEp-2 cells: Where are we now?. Pattern Recognit. 47 (2014), 2305–2314.
    • (2014) Pattern Recognit. , vol.47 , pp. 2305-2314
    • Foggia, P.1    Percannella, G.2    Saggese, A.3    Vento, M.4
  • 11
    • 84897111964 scopus 로고    scopus 로고
    • Efficient k-NN based HEp-2 cells classifier
    • [11] Stoklasa, R., Majtner, T., Svoboda, D., Efficient k-NN based HEp-2 cells classifier. Pattern Recognit. 47 (2014), 2409–2418.
    • (2014) Pattern Recognit. , vol.47 , pp. 2409-2418
    • Stoklasa, R.1    Majtner, T.2    Svoboda, D.3
  • 12
    • 84897109203 scopus 로고    scopus 로고
    • Automatic classification of human epithelial type 2 cell indirect immunofluorescence images using cell pyramid matching
    • [12] Wiliem, A., Sanderson, C., Wong, Y., Hobson, P., Minchin, R.F., Lovell, B.C., Automatic classification of human epithelial type 2 cell indirect immunofluorescence images using cell pyramid matching. Pattern Recognit. 47 (2014), 2315–2324.
    • (2014) Pattern Recognit. , vol.47 , pp. 2315-2324
    • Wiliem, A.1    Sanderson, C.2    Wong, Y.3    Hobson, P.4    Minchin, R.F.5    Lovell, B.C.6
  • 13
    • 84897111566 scopus 로고    scopus 로고
    • HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns
    • [13] Nosaka, R., Fukui, K., HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recognit. 47 (2014), 2428–2436.
    • (2014) Pattern Recognit. , vol.47 , pp. 2428-2436
    • Nosaka, R.1    Fukui, K.2
  • 14
    • 84897115388 scopus 로고    scopus 로고
    • Visual learning and classification of human epithelial type 2 cell images through spontaneous activity patterns
    • [14] Yang, Y., Wiliem, A., Alavi, A., Lovell, B.C., Hobson, P., Visual learning and classification of human epithelial type 2 cell images through spontaneous activity patterns. Pattern Recognit. 47 (2014), 2325–2337.
    • (2014) Pattern Recognit. , vol.47 , pp. 2325-2337
    • Yang, Y.1    Wiliem, A.2    Alavi, A.3    Lovell, B.C.4    Hobson, P.5
  • 19
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • [19] Ojala, T., Pietikäinen, M., Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), 971–987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 20
    • 79958842177 scopus 로고    scopus 로고
    • PLBP: An effective local binary patterns texture descriptor with pyramid representation
    • [20] Qian, X., Hua, X.-S., Chen, P., Ke, L., PLBP: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44 (2011), 2502–2515.
    • (2011) Pattern Recognit. , vol.44 , pp. 2502-2515
    • Qian, X.1    Hua, X.-S.2    Chen, P.3    Ke, L.4
  • 21
    • 84898491362 scopus 로고    scopus 로고
    • Texture classification using a linear configuration model based descriptor
    • British Machine Vision Association
    • [21] Guo, Y., Zhao, G., Pietikäinen, M., Texture classification using a linear configuration model based descriptor. Proceedings of the 2011 British Machine Vision Conference, 2011, British Machine Vision Association, 119.1–119.10.
    • (2011) Proceedings of the 2011 British Machine Vision Conference , pp. 119.1-119.10
    • Guo, Y.1    Zhao, G.2    Pietikäinen, M.3
  • 22
    • 84862815971 scopus 로고    scopus 로고
    • Extended local binary patterns for texture classification
    • [22] Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P., Extended local binary patterns for texture classification. Image Vis. Comput. 30 (2012), 86–99.
    • (2012) Image Vis. Comput. , vol.30 , pp. 86-99
    • Liu, L.1    Zhao, L.2    Long, Y.3    Kuang, G.4    Fieguth, P.5
  • 24
    • 77950188774 scopus 로고    scopus 로고
    • Evaluation of ensemble methods for diagnosing of valvular heart disease
    • [24] Das, R., Sengur, A., Evaluation of ensemble methods for diagnosing of valvular heart disease. Expert Syst. Appl. 37 (2010), 5110–5115.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 5110-5115
    • Das, R.1    Sengur, A.2
  • 25
    • 58149316227 scopus 로고    scopus 로고
    • Diagnosis of valvular heart disease through neural networks ensembles
    • [25] Das, R., Turkoglu, I., Sengur, A., Diagnosis of valvular heart disease through neural networks ensembles. Comput. Methods Programs Biomed. 93 (2009), 185–191.
    • (2009) Comput. Methods Programs Biomed. , vol.93 , pp. 185-191
    • Das, R.1    Turkoglu, I.2    Sengur, A.3
  • 29
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • [29] Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60 (2004), 91–110.
    • (2004) Int. J. Comput. Vis. , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 33
    • 84878964801 scopus 로고    scopus 로고
    • An ensemble of classifiers based on different texture descriptors for texture classification
    • [33] Paci, M., Nanni, L., Severi, S., An ensemble of classifiers based on different texture descriptors for texture classification. J. King Saud Univ. Sci. 25 (2013), 235–244.
    • (2013) J. King Saud Univ. Sci. , vol.25 , pp. 235-244
    • Paci, M.1    Nanni, L.2    Severi, S.3
  • 34
    • 84941104504 scopus 로고    scopus 로고
    • Computer vision for virus image classification
    • [34] dos Santos, F.L.C., Paci, M., Nanni, L., Brahnam, S., Hyttinen, J., Computer vision for virus image classification. Biosyst. Eng. 138 (2015), 11–22, 10.1016/j.biosystemseng.2015.01.005.
    • (2015) Biosyst. Eng. , vol.138 , pp. 11-22
    • dos Santos, F.L.C.1    Paci, M.2    Nanni, L.3    Brahnam, S.4    Hyttinen, J.5
  • 35
    • 84907059198 scopus 로고    scopus 로고
    • Improving local binary patterns techniques by using edge information
    • [35] Abdesselam, A., Improving local binary patterns techniques by using edge information. Lect. Notes Softw. Eng. 1 (2013), 360–363.
    • (2013) Lect. Notes Softw. Eng. , vol.1 , pp. 360-363
    • Abdesselam, A.1
  • 36
    • 0001295624 scopus 로고
    • Orthonormal bases of compactly supported wavelets II. Variations on a theme
    • [36] Daubechies, I., Orthonormal bases of compactly supported wavelets II. Variations on a theme. SIAM J. Math. Anal. 24 (1993), 499–519.
    • (1993) SIAM J. Math. Anal. , vol.24 , pp. 499-519
    • Daubechies, I.1
  • 37
    • 84884487209 scopus 로고    scopus 로고
    • Contraharmonic mean based bias field correction in MR images
    • Springer Berlin Heidelberg
    • [37] Banerjee, A., Maji, P., Contraharmonic mean based bias field correction in MR images. Comput. Anal. Images Patterns, 2013, Springer, Berlin Heidelberg, 523–530.
    • (2013) Comput. Anal. Images Patterns , pp. 523-530
    • Banerjee, A.1    Maji, P.2
  • 39
    • 84855386008 scopus 로고    scopus 로고
    • Efficient and effective visual codebook generation using additive kernels
    • [39] Wu, J., Tan, W., Rehg, J., Efficient and effective visual codebook generation using additive kernels. J. Mach. Learn. Res. 12 (2011), 3097–3118.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 3097-3118
    • Wu, J.1    Tan, W.2    Rehg, J.3
  • 41
    • 84939614531 scopus 로고    scopus 로고
    • Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset
    • [41] Hobson, P., Lovell, B.C., Percannella, G., Vento, M., Wiliem, A., Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset. Artif. Intell. Med. 65 (2015), 239–250.
    • (2015) Artif. Intell. Med. , vol.65 , pp. 239-250
    • Hobson, P.1    Lovell, B.C.2    Percannella, G.3    Vento, M.4    Wiliem, A.5
  • 42
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • [42] Hanley, J.A., McNeil, B.J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982), 29–36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 46
    • 84897115085 scopus 로고    scopus 로고
    • ANA HEp-2 cells image classification using number, size, shape and localization of targeted cell regions
    • [46] Ponomarev, G.V., Arlazarov, V.L., Gelfand, M.S., Kazanov, M.D., ANA HEp-2 cells image classification using number, size, shape and localization of targeted cell regions. Pattern Recognit. 47 (2014), 2360–2366.
    • (2014) Pattern Recognit. , vol.47 , pp. 2360-2366
    • Ponomarev, G.V.1    Arlazarov, V.L.2    Gelfand, M.S.3    Kazanov, M.D.4
  • 47
    • 84903773823 scopus 로고    scopus 로고
    • HEp-2 cell classification using shape index histograms with donut-shaped spatial pooling
    • [47] Larsen, A.B.L., Vestergaard, J.S., Larsen, R., HEp-2 cell classification using shape index histograms with donut-shaped spatial pooling. IEEE Trans. Med. Imaging 33 (2014), 1573–1580.
    • (2014) IEEE Trans. Med. Imaging , vol.33 , pp. 1573-1580
    • Larsen, A.B.L.1    Vestergaard, J.S.2    Larsen, R.3
  • 49
    • 77952634397 scopus 로고    scopus 로고
    • Enhanced local texture feature sets for face recognition under difficult lighting conditions
    • [49] Tan, X., Triggs, B., Enhanced local texture feature sets for face recognition under difficult lighting conditions. Image Process. IEEE Trans. 19 (2010), 1635–1650.
    • (2010) Image Process. IEEE Trans. , vol.19 , pp. 1635-1650
    • Tan, X.1    Triggs, B.2
  • 50
    • 77952607168 scopus 로고    scopus 로고
    • A completed modeling of local binary pattern operator for texture classification
    • [50] Guo, Z., Zhang, L., Zhang, D., A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 16 (2010), 1657–1663.
    • (2010) IEEE Trans. Image Process. , vol.16 , pp. 1657-1663
    • Guo, Z.1    Zhang, L.2    Zhang, D.3
  • 52
    • 81855226072 scopus 로고    scopus 로고
    • Virus texture analysis using local binary patterns and radial density profiles
    • Pattern Recognit, Martin S, Kim S-W
    • [52] Kylberg, G., Uppström, M., Sintorn, I., Virus texture analysis using local binary patterns and radial density profiles. Proceedings of the Sixteenth Iberoamerican Congress, 2011, Pattern Recognit, Martin S, Kim S-W, 573–580.
    • (2011) Proceedings of the Sixteenth Iberoamerican Congress , pp. 573-580
    • Kylberg, G.1    Uppström, M.2    Sintorn, I.3
  • 53
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • [53] Boland, M.V., Murphy, R.F., A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17 (2001), 1213–1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 54
    • 79951681956 scopus 로고    scopus 로고
    • Video-based smoke detection with histogram sequence of LBP and LBPV pyramids
    • [54] Yuan, F., Video-based smoke detection with histogram sequence of LBP and LBPV pyramids. Fire Saf. J. 46 (2011), 132–139.
    • (2011) Fire Saf. J. , vol.46 , pp. 132-139
    • Yuan, F.1
  • 55
    • 79959713937 scopus 로고    scopus 로고
    • Visual pattern mining in histology image collections using bag of features
    • [55] Cruz-Roa, A., Caicedo, J.C., a González, F., Visual pattern mining in histology image collections using bag of features. Artif. Intell. Med. 52 (2011), 91–106.
    • (2011) Artif. Intell. Med. , vol.52 , pp. 91-106
    • Cruz-Roa, A.1    Caicedo, J.C.2    a González, F.3
  • 56
    • 71849094325 scopus 로고    scopus 로고
    • Classification of breast tissues using Moran's index and Geary's coefficient as texture signatures and SVM
    • [56] Braz Junior, G., Cardoso de Paiva, A., Corrêa Silva, A., Cesar Muniz de Oliveira, A., Classification of breast tissues using Moran's index and Geary's coefficient as texture signatures and SVM. Comput. Biol. Med. 39 (2009), 1063–1072.
    • (2009) Comput. Biol. Med. , vol.39 , pp. 1063-1072
    • Braz Junior, G.1    Cardoso de Paiva, A.2    Corrêa Silva, A.3    Cesar Muniz de Oliveira, A.4
  • 57
    • 77952597389 scopus 로고    scopus 로고
    • Protein classification using texture descriptors extracted from the protein backbone image
    • [57] Nanni, L., Shi, J.-Y., Brahnam, S., Lumini, A., Protein classification using texture descriptors extracted from the protein backbone image. J. Theor. Biol. 264 (2010), 1024–1032.
    • (2010) J. Theor. Biol. , vol.264 , pp. 1024-1032
    • Nanni, L.1    Shi, J.-Y.2    Brahnam, S.3    Lumini, A.4
  • 58
  • 59
    • 84898800141 scopus 로고    scopus 로고
    • Miniature illustrations retrieval and innovative interaction for digital illuminated manuscripts
    • [59] Borghesani, D., Grana, C., Cucchiara, R., Miniature illustrations retrieval and innovative interaction for digital illuminated manuscripts. Multimed. Syst. 20 (2014), 65–79.
    • (2014) Multimed. Syst. , vol.20 , pp. 65-79
    • Borghesani, D.1    Grana, C.2    Cucchiara, R.3
  • 61
    • 84904512606 scopus 로고    scopus 로고
    • Painting-91: A large scale database for computational painting categorization
    • [61] Khan, F.S., Beigpour, S., Van De Weijer, J., Felsberg, M., Painting-91: A large scale database for computational painting categorization. Mach. Vis. Appl. 25 (2014), 1385–1397.
    • (2014) Mach. Vis. Appl. , vol.25 , pp. 1385-1397
    • Khan, F.S.1    Beigpour, S.2    Van De Weijer, J.3    Felsberg, M.4
  • 63
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • [63] Demšar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 64
    • 20844441675 scopus 로고    scopus 로고
    • KBA: Kernel boundary alignment considering imbalanced data distribution
    • [64] Wu, G., Chang, E.Y., KBA: Kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 17 (2005), 786–795.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 65
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: Analysis and potential solutions
    • [65] Wang, S., Yao, X., Multiclass imbalance problems: Analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42 (2012), 1119–1130.
    • (2012) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.42 , pp. 1119-1130
    • Wang, S.1    Yao, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.