메뉴 건너뛰기




Volumn 47, Issue 7, 2014, Pages 2409-2418

Efficient k-NN based HEp-2 cells classifier

Author keywords

Classification; Classifier; HEp 2 cells; IIF; Image descriptor; Indirect Immunofluorescence; Nearest neighbours

Indexed keywords

COMPUTER AIDED ANALYSIS; COMPUTER AIDED DIAGNOSIS; CYTOLOGY; FLUORESCENCE; IMAGE CLASSIFICATION; LOCAL BINARY PATTERN; NEAREST NEIGHBOR SEARCH; VECTOR SPACES;

EID: 84897111964     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2013.09.021     Document Type: Article
Times cited : (41)

References (59)
  • 3
    • 0037103187 scopus 로고    scopus 로고
    • American, evidence-based guidelines for the use of immunologic tests antinuclear antibody testing
    • D.H. Solomon, A.J. Kavanaugh, and P.H. Schur American, evidence-based guidelines for the use of immunologic tests antinuclear antibody testing Arthritis & Rheumatism 47 4 2002 434 444
    • (2002) Arthritis & Rheumatism , vol.47 , Issue.4 , pp. 434-444
    • Solomon, D.H.1    Kavanaugh, A.J.2    Schur, P.H.3
  • 7
    • 85172641651 scopus 로고    scopus 로고
    • BioSystems S.A., Costa Brava 30, Barcelona, Spain, Anti-Nuclear Antibodies HEp-2 (ANA-HEp-2)
    • BioSystems S.A., Costa Brava 30, Barcelona, Spain, Anti-Nuclear Antibodies HEp-2 (ANA-HEp-2), URL 〈 http://www.biosystems.es/corpdocs/ downer.aspx?arxiu=44508i.PDF&tipus=1 〉.
  • 10
    • 33645957073 scopus 로고    scopus 로고
    • Objective quality evaluation of fluorescence images to optimize automatic image acquisition
    • R. Hiemann, N. Hilger, U. Sack, and M. Weigert Objective quality evaluation of fluorescence images to optimize automatic image acquisition Cytometry Part A 69A 3 2006 182 184
    • (2006) Cytometry Part A , vol.69 A , Issue.3 , pp. 182-184
    • Hiemann, R.1    Hilger, N.2    Sack, U.3    Weigert, M.4
  • 14
    • 67349187542 scopus 로고    scopus 로고
    • Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis
    • P. Soda, and G. Iannello Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis IEEE Transactions on Information Technology in Biomedicine 13 3 2009 322 329
    • (2009) IEEE Transactions on Information Technology in Biomedicine , vol.13 , Issue.3 , pp. 322-329
    • Soda, P.1    Iannello, G.2
  • 16
    • 0043264310 scopus 로고    scopus 로고
    • Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics
    • U. Sack, S. Knoechner, H. Warschkau, U. Pigla, F. Emmrich, and M. Kamprad Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics Autoimmunity Reviews 2 5 2003 298 304
    • (2003) Autoimmunity Reviews , vol.2 , Issue.5 , pp. 298-304
    • Sack, U.1    Knoechner, S.2    Warschkau, H.3    Pigla, U.4    Emmrich, F.5    Kamprad, M.6
  • 18
    • 84874555021 scopus 로고    scopus 로고
    • Feature analysis for automatic classification of HEp-2 florescence patterns: Computer-aided diagnosis of auto-immune diseases
    • S. Ghosh, V. Chaudhary, Feature analysis for automatic classification of HEp-2 florescence patterns: Computer-aided diagnosis of auto-immune diseases, in: 2012 IEEE 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 174-177.
    • (2012) 2012 IEEE 21st International Conference on Pattern Recognition (ICPR) , pp. 174-177
    • Ghosh, S.1    Chaudhary, V.2
  • 24
    • 69649107067 scopus 로고    scopus 로고
    • Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells
    • R. Hiemann, T. Büttner, T. Krieger, D. Roggenbuck, U. Sack, and K. Conrad Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells Autoimmunity Reviews 9 1 2009 17 22
    • (2009) Autoimmunity Reviews , vol.9 , Issue.1 , pp. 17-22
    • Hiemann, R.1    Büttner, T.2    Krieger, T.3    Roggenbuck, D.4    Sack, U.5    Conrad, K.6
  • 27
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L.M.L. Cam, J. Neyman, University of California Press
    • J.B. MacQueen Some methods for classification and analysis of multivariate observations L.M.L. Cam, J. Neyman, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability vol. 1 1967 University of California Press 281 297
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 28
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V.N. Vapnik An overview of statistical learning theory IEEE Transactions on Neural Networks 10 5 1999 988 999
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 29
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification implications for training and classification users
    • A. Mathur, and G. Foody Multiclass and binary SVM classification implications for training and classification users IEEE Geoscience and Remote Sensing Letters 5 2 2008 241 245
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.2 , pp. 241-245
    • Mathur, A.1    Foody, G.2
  • 30
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • M.V. Boland, M.K. Markey, and R.F. Murphy Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images Cytometry 33 3 1998 366 375
    • (1998) Cytometry , vol.33 , Issue.3 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 32
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan Induction of decision trees Machine Learning 1 1 1986 81 106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 36
    • 84873393113 scopus 로고    scopus 로고
    • Optimal weighted nearest neighbour classifiers
    • R.J. Samworth Optimal weighted nearest neighbour classifiers Annals of Statistics 40 5 2012 2733 2763
    • (2012) Annals of Statistics , vol.40 , Issue.5 , pp. 2733-2763
    • Samworth, R.J.1
  • 38
    • 84884621012 scopus 로고    scopus 로고
    • MESSIF: Metric similarity search implementation framework
    • M. Batko, D. Novak, P. Zezula, MESSIF: metric similarity search implementation framework, in: DELOS'07, URL 〈 http://lsd.fi.muni.cz/trac/ messif/ 〉, 2007.
    • (2007) DELOS'07
    • Batko, M.1    Novak, D.2    Zezula, P.3
  • 41
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • M.V. Boland, and R.F. Murphy A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells Bioinformatics 17 12 2001 1213 1223
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 45
    • 0025631742 scopus 로고
    • Texture classification using texture spectrum
    • L. Wang, and D.-C. He Texture classification using texture spectrum Pattern Recognition 23 8 1990 905 910
    • (1990) Pattern Recognition , vol.23 , Issue.8 , pp. 905-910
    • Wang, L.1    He, D.-C.2
  • 54
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2 2004 91 110
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 55
    • 3142736062 scopus 로고    scopus 로고
    • Robust wide-baseline stereo from maximally stable extremal regions
    • J. Matas, O. Chum, M. Urban, and T. Pajdla Robust wide-baseline stereo from maximally stable extremal regions Image and Vision Computing 22 10 2004 761 767
    • (2004) Image and Vision Computing , vol.22 , Issue.10 , pp. 761-767
    • Matas, J.1    Chum, O.2    Urban, M.3    Pajdla, T.4
  • 57
    • 67649407308 scopus 로고    scopus 로고
    • Combining feature spaces for classification
    • T. Damoulas, and M.A. Girolami Combining feature spaces for classification Pattern Recognition 42 11 2009 2671 2683
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2671-2683
    • Damoulas, T.1    Girolami, M.A.2
  • 59
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or by multiplying?
    • D.M. Tax, M. Van Breukelen, R.P. Duin, and J. Kittler Combining multiple classifiers by averaging or by multiplying? Pattern Recognition 33 9 2000 1475 1485
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1475-1485
    • Tax, D.M.1    Van Breukelen, M.2    Duin, R.P.3    Kittler, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.