-
1
-
-
33947111333
-
Entropy formulation for fractal conservation laws
-
Nathaël Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ., 7 (2007), 145-175.
-
(2007)
J. Evol. Equ.
, vol.7
, pp. 145-175
-
-
Alibaud, N.1
-
2
-
-
34447257464
-
Occurrence and non-appearance of shocks in fractal Burgers equations
-
Nathaël Alibaud, Jérôme Droniou and Julien Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ., 4 (2007), 479-499.
-
(2007)
J. Hyperbolic Differ. Equ.
, vol.4
, pp. 479-499
-
-
Alibaud, N.1
Droniou, J.2
Vovelle, J.3
-
4
-
-
0002015456
-
Fractal burgers equations
-
Piotr Biler, Tadahisa Funaki and Wojbor A. Woyczynski, Fractal Burgers equations, J. Differential Equations, 148 (1998), 9-46.
-
(1998)
J. Differential Equations
, vol.148
, pp. 9-46
-
-
Biler, P.1
Funaki, T.2
Woyczynski, W.A.3
-
8
-
-
54549116855
-
Regularity of hölder continuous solutions of the supercritical quasi-geostrophic equation
-
P. Constantin and J. Wu, Regularity of Holder continuous solutions of the supercritical quasi-geostrophic equation, Ann. IH Poincaré-AN, 25 (2008), 1103-1110.
-
(2008)
Ann. IH Poincaré-an
, vol.25
, pp. 1103-1110
-
-
Constantin, P.1
Wu, J.2
-
9
-
-
0033419179
-
Behavior of solutions of 2D quasi-geostrophic equations
-
Electronic
-
Peter Constantin and Jiahong Wu, Behavior of solutions of 21) quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948 (electronic).
-
(1999)
SIAM J. Math. Anal.
, vol.30
, pp. 937-948
-
-
Constantin, P.1
Wu, J.2
-
10
-
-
4544377751
-
A maximum principle applied to quasi-geostrophic equations
-
Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.
-
(2004)
Comm. Math. Phys.
, vol.249
, pp. 511-528
-
-
Córdoba, A.1
Córdoba, D.2
-
11
-
-
0002412307
-
Sulla differenziabilità e l'analiticità delle estremali degli integroli multipli regolari
-
Ennio De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integroli multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25-43.
-
(1957)
Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat.
, vol.3
, pp. 25-43
-
-
De Giorgi, E.1
-
12
-
-
67249097393
-
Finite time singularities and global well-posedness for fractal burgers equations
-
Hongjie Dong, Dapeng Du and Dong Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J., 58 (2009), 807-821.
-
(2009)
Indiana Univ. Math. J.
, vol.58
, pp. 807-821
-
-
Dong, H.1
Du, D.2
Li, D.3
-
13
-
-
0141648426
-
Global solution and smoothing effect for a non-local regularization of a hyperbolic equation
-
Dedicated to Philippe Bénilan.
-
J. Droniou, T. Gallouët and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499-521. Dedicated to Philippe Bénilan.
-
(2003)
J. Evol. Equ.
, vol.3
, pp. 499-521
-
-
Droniou, J.1
Gallouët, T.2
Vovelle, J.3
-
14
-
-
33747469213
-
Fractal first-order partial differential equations
-
Jérôme Droniou and Cyril Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331.
-
(2006)
Arch. Ration. Mech. Anal.
, vol.182
, pp. 299-331
-
-
Droniou, J.1
Imbert, C.2
-
15
-
-
33846785446
-
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
-
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones mathematicae, 167 (2007), 445-453.
-
(2007)
Inventiones Mathematicae
, vol.167
, pp. 445-453
-
-
Kiselev, A.1
Nazarov, F.2
Volberg, A.3
-
16
-
-
55349138425
-
Blow up and regularity for fractal burgers equation
-
Alexander Kiselev, Fedor Nazarov and Roman Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5 (2008), 211-240.
-
(2008)
Dyn. Partial Differ. Equ.
, vol.5
, pp. 211-240
-
-
Kiselev, A.1
Nazarov, F.2
Shterenberg, R.3
-
17
-
-
0041132744
-
An estimate for the probability of a diffusion process hitting a set of positive measure
-
N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Doki. Akad. Nauk SSSR, 245 (1979), 18-20.
-
(1979)
Doki. Akad. Nauk SSSR
, vol.245
, pp. 18-20
-
-
Krylov, N.V.1
Safonov, M.V.2
-
18
-
-
84980078895
-
A harnack inequality for parabolic differential equations
-
Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), 101-134.
-
(1964)
Comm. Pure Appl. Math.
, vol.17
, pp. 101-134
-
-
Moser, J.1
-
19
-
-
0001680091
-
Continuity of solutions of parabolic and elliptic equations
-
J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958),931-954.
-
(1958)
Amer. J. Math.
, vol.80
, pp. 931-954
-
-
Nash, J.1
-
21
-
-
33747032243
-
Holder estimates for solutions of integro-differential equations like the fractional laplace
-
L. Silvestre, Holder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal, 55 (2006), 1155-1174.
-
(2006)
Indiana University Mathematics Journal
, vol.55
, pp. 1155-1174
-
-
Silvestre, L.1
|