-
1
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
Diethelm K., Ford N.J., Freed A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29:3-22.
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
2
-
-
3042709180
-
Multi-order fractional differential equations and their numerical solution
-
Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154:621-640.
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 621-640
-
-
Diethelm, K.1
Ford, N.J.2
-
3
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu F.W., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.W.1
Anh, V.2
Turner, I.3
-
4
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
5
-
-
34249335010
-
Short memory principle and a predictor-corrector approach for fractional differential equations
-
Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 2007, 206:174-188.
-
(2007)
J. Comput. Appl. Math.
, vol.206
, pp. 174-188
-
-
Deng, W.1
-
6
-
-
65049084831
-
-
World Scientific, Boston, Mass, USA
-
Baleanu D., Diethelm K., Scalas E., Trujillo J. Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos 2012, World Scientific, Boston, Mass, USA.
-
(2012)
Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.4
-
7
-
-
0037174280
-
Analytical approximate solutions for nonlinear fractional differential equations
-
Shawagfeh N.T. Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 2002, 131:517-529.
-
(2002)
Appl. Math. Comput.
, vol.131
, pp. 517-529
-
-
Shawagfeh, N.T.1
-
8
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365:345-350.
-
(2007)
Phys. Lett. A
, vol.365
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
9
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F.W., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.W.2
Anh, V.3
Turner, I.4
-
10
-
-
65049090377
-
Numerical algorithm based on Adomian decomposition for fractional differential equations
-
Li C.P., Wang Y.H. Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput. Math. Appl. 2009, 57:1672-1681.
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 1672-1681
-
-
Li, C.P.1
Wang, Y.H.2
-
11
-
-
79953679592
-
Approximate solutions to fractional subdiffusion equations
-
Hristov J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Special Topics 2011, 193:229-243.
-
(2011)
Eur. Phys. J. Special Topics
, vol.193
, pp. 229-243
-
-
Hristov, J.1
-
12
-
-
84874054174
-
A review of the Adomian decomposition method and its applications to fractional differential equations
-
Duan J.S., Rach R., Buleanu D., Wazwaz A.M. A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Fract. Calc. 2012, 3:73-99.
-
(2012)
Commun. Fract. Calc.
, vol.3
, pp. 73-99
-
-
Duan, J.S.1
Rach, R.2
Buleanu, D.3
Wazwaz, A.M.4
-
13
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167:57-68.
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
14
-
-
0000092673
-
Variational iteration method - a kind of non-linear analytical technique: some examples
-
He J.H. Variational iteration method - a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 1999, 34:699-708.
-
(1999)
Int. J. Non-Linear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
15
-
-
34250647432
-
An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method
-
Abbasbandy S. An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method. J. Comput. Appl. Math. 2007, 207:53-58.
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 53-58
-
-
Abbasbandy, S.1
-
16
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
Momani S., Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 2006, 355:271-279.
-
(2006)
Phys. Lett. A
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
17
-
-
43949121726
-
The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method
-
Inc M. The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 2008, 345:476-484.
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 476-484
-
-
Inc, M.1
-
18
-
-
60549112414
-
Variational iteration method for fractional heat- and wave-like equations
-
Yulita M.R., Noorani M.S.M., Hashim I. Variational iteration method for fractional heat- and wave-like equations. Nonlinear Anal. Real World Appl. 2009, 10:1854-1869.
-
(2009)
Nonlinear Anal. Real World Appl.
, vol.10
, pp. 1854-1869
-
-
Yulita, M.R.1
Noorani, M.S.M.2
Hashim, I.3
-
19
-
-
79953748504
-
Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations
-
Nawaz Y. Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math. Appl. 2011, 61:2330-2341.
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 2330-2341
-
-
Nawaz, Y.1
-
20
-
-
84859756253
-
Variational iteration method for the time-fractional Fornberg-Whitham equation
-
Sakar M.G., Erdogan F., Yildirim A. Variational iteration method for the time-fractional Fornberg-Whitham equation. Comput. Math. Appl. 2012, 63:1382-1388.
-
(2012)
Comput. Math. Appl.
, vol.63
, pp. 1382-1388
-
-
Sakar, M.G.1
Erdogan, F.2
Yildirim, A.3
-
23
-
-
79251595176
-
Application of numerical inverse Laplace transform algorithms in fractional calculus
-
Sheng H., Li Y., Chen Y.Q. Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Franklin Inst. 2011, 348:315-330.
-
(2011)
J. Franklin Inst.
, vol.348
, pp. 315-330
-
-
Sheng, H.1
Li, Y.2
Chen, Y.Q.3
-
24
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
-
Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7:1461-1477.
-
(1996)
Chaos Solitons Fractals
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
25
-
-
34748870677
-
Variational iteration method: new development and applications
-
He J.H., Wu X.H. Variational iteration method: new development and applications. Comput. Math. Appl. 2007, 54:881-894.
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 881-894
-
-
He, J.H.1
Wu, X.H.2
-
28
-
-
34250778451
-
On the MHD flow of fractional generalized Burgers' fluid with modified Darcy's law
-
Hayat T., Khan M., Asghar S. On the MHD flow of fractional generalized Burgers' fluid with modified Darcy's law. Acta. Mech. Sin. 2007, 23:257-261.
-
(2007)
Acta. Mech. Sin.
, vol.23
, pp. 257-261
-
-
Hayat, T.1
Khan, M.2
Asghar, S.3
-
29
-
-
45349109022
-
An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space
-
Xue C., Nie J., Tan W. An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space. Nonlinear Anal.-Theory Methods Appl. 2008, 69:2086-2094.
-
(2008)
Nonlinear Anal.-Theory Methods Appl.
, vol.69
, pp. 2086-2094
-
-
Xue, C.1
Nie, J.2
Tan, W.3
-
30
-
-
61749088333
-
On accelerated flows of a viscoelastic fluid with the fractional Burgers' model
-
Khan M., Ali S.H., Qi H. On accelerated flows of a viscoelastic fluid with the fractional Burgers' model. Nonlinear Anal.-Real World Appl. 2009, 10:2286-2296.
-
(2009)
Nonlinear Anal.-Real World Appl.
, vol.10
, pp. 2286-2296
-
-
Khan, M.1
Ali, S.H.2
Qi, H.3
-
31
-
-
77952239073
-
Some helical flows of a Burgers' fluid with fractional derivative
-
Shah S.H.A.M. Some helical flows of a Burgers' fluid with fractional derivative. Meccanica 2010, 45:143-151.
-
(2010)
Meccanica
, vol.45
, pp. 143-151
-
-
Shah, S.H.A.M.1
-
32
-
-
43049157795
-
Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives
-
Chen Y., An H.L. Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives. Appl. Math. Comput. 2008, 200:87-95.
-
(2008)
Appl. Math. Comput.
, vol.200
, pp. 87-95
-
-
Chen, Y.1
An, H.L.2
|