-
1
-
-
27844560086
-
Oral microbial communities in sickness and in health
-
Jenkinson H.F., Lamont R.J. Oral microbial communities in sickness and in health. Trends Microbiol. 2005, 13:589-595.
-
(2005)
Trends Microbiol.
, vol.13
, pp. 589-595
-
-
Jenkinson, H.F.1
Lamont, R.J.2
-
3
-
-
84875045260
-
Microbial interactions in building of communities
-
Wright C.J., et al. Microbial interactions in building of communities. Mol. Oral Microbiol. 2013, 28:83-101.
-
(2013)
Mol. Oral Microbiol.
, vol.28
, pp. 83-101
-
-
Wright, C.J.1
-
4
-
-
84902208556
-
Characterization of a bacterial tyrosine kinase in Porphyromonas gingivalis involved in polymicrobial synergy
-
Wright C.J., et al. Characterization of a bacterial tyrosine kinase in Porphyromonas gingivalis involved in polymicrobial synergy. Microbiologyopen 2014, 3:383-394.
-
(2014)
Microbiologyopen
, vol.3
, pp. 383-394
-
-
Wright, C.J.1
-
5
-
-
84864192030
-
Insights into the virulence of oral biofilms: discoveries from proteomics
-
Kuboniwa M., et al. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev. Proteom. 2012, 9:311-323.
-
(2012)
Expert Rev. Proteom.
, vol.9
, pp. 311-323
-
-
Kuboniwa, M.1
-
6
-
-
84937642122
-
Interkingdom networking within the oral microbiome
-
Nobbs A.H., Jenkinson H.F. Interkingdom networking within the oral microbiome. Microbes Infect. 2015, 17:484-492.
-
(2015)
Microbes Infect.
, vol.17
, pp. 484-492
-
-
Nobbs, A.H.1
Jenkinson, H.F.2
-
7
-
-
84979862086
-
Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue
-
Schlecht L.M., et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 2015, 161:168-181.
-
(2015)
Microbiology
, vol.161
, pp. 168-181
-
-
Schlecht, L.M.1
-
8
-
-
0026491052
-
Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis
-
Grenier D. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect. Immun. 1992, 60:5298-5301.
-
(1992)
Infect. Immun.
, vol.60
, pp. 5298-5301
-
-
Grenier, D.1
-
9
-
-
84872396139
-
Treponema denticola improves adhesive capacities of Porphyromonas gingivalis
-
Meuric V., et al. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol. Oral Microbiol. 2013, 28:40-53.
-
(2013)
Mol. Oral Microbiol.
, vol.28
, pp. 40-53
-
-
Meuric, V.1
-
10
-
-
79960080266
-
Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model
-
Orth R.K., et al. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol. Oral Microbiol. 2011, 26:229-240.
-
(2011)
Mol. Oral Microbiol.
, vol.26
, pp. 229-240
-
-
Orth, R.K.1
-
11
-
-
69949129819
-
Proteolytic degradation of human salivary MUC5B by dental biofilms
-
Wickstrom C., et al. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology 2009, 155:2866-2872.
-
(2009)
Microbiology
, vol.155
, pp. 2866-2872
-
-
Wickstrom, C.1
-
12
-
-
84906937658
-
Polybacterial human disease: the ills of social networking
-
Short F.L., et al. Polybacterial human disease: the ills of social networking. Trends Microbiol. 2014, 22:508-516.
-
(2014)
Trends Microbiol.
, vol.22
, pp. 508-516
-
-
Short, F.L.1
-
13
-
-
84879580824
-
Molecular dissection of bacterial nanowires
-
e00270-00213
-
Boesen T., Nielsen L.P. Molecular dissection of bacterial nanowires. MBio 2013, 4. e00270-00213.
-
(2013)
MBio
, vol.4
-
-
Boesen, T.1
Nielsen, L.P.2
-
14
-
-
84941022402
-
Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism
-
Weigel W.A., et al. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism. Mol. Oral Microbiol. 2015, 30:384-398.
-
(2015)
Mol. Oral Microbiol.
, vol.30
, pp. 384-398
-
-
Weigel, W.A.1
-
15
-
-
84895190999
-
Mechanisms of synergy in polymicrobial infections
-
Murray J.L., et al. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 2014, 52:188-199.
-
(2014)
J. Microbiol.
, vol.52
, pp. 188-199
-
-
Murray, J.L.1
-
16
-
-
84929334974
-
Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens
-
Vogt S.L., et al. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 2015, 34:106-115.
-
(2015)
Anaerobe
, vol.34
, pp. 106-115
-
-
Vogt, S.L.1
-
17
-
-
77958186705
-
Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling
-
e00102-e00110
-
Armbruster C.E., et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio 2010, 1:e00102-e00110.
-
(2010)
MBio
, vol.1
-
-
Armbruster, C.E.1
-
18
-
-
84947586620
-
Bacterial danger sensing
-
LeRoux M., et al. Bacterial danger sensing. J. Mol. Biol. 2015, 427:3744-3753.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 3744-3753
-
-
LeRoux, M.1
-
19
-
-
70249118556
-
The oral microbial consortium's interaction with the periodontal innate defense system
-
Darveau R.P. The oral microbial consortium's interaction with the periodontal innate defense system. DNA Cell Biol. 2009, 28:389-395.
-
(2009)
DNA Cell Biol.
, vol.28
, pp. 389-395
-
-
Darveau, R.P.1
-
20
-
-
84879343905
-
Control of pathogens and pathobionts by the gut microbiota
-
Kamada N., et al. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14:685-690.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 685-690
-
-
Kamada, N.1
-
21
-
-
84861972274
-
Regulated virulence controls the ability of a pathogen to compete with the gut microbiota
-
Kamada N., et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012, 336:1325-1329.
-
(2012)
Science
, vol.336
, pp. 1325-1329
-
-
Kamada, N.1
-
22
-
-
84907300008
-
Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
-
Palm N.W., et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014, 158:1000-1010.
-
(2014)
Cell
, vol.158
, pp. 1000-1010
-
-
Palm, N.W.1
-
23
-
-
77958096962
-
Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content
-
Bertin Y., et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ. Microbiol. 2011, 13:365-377.
-
(2011)
Environ. Microbiol.
, vol.13
, pp. 365-377
-
-
Bertin, Y.1
-
24
-
-
84924630982
-
Polymicrobial synergy and dysbiosis in inflammatory disease
-
Lamont R.J., Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol. Med. 2015, 21:172-183.
-
(2015)
Trends Mol. Med.
, vol.21
, pp. 172-183
-
-
Lamont, R.J.1
Hajishengallis, G.2
-
25
-
-
33644834607
-
Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community
-
Kuboniwa M., et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol. 2006, 60:121-139.
-
(2006)
Mol. Microbiol.
, vol.60
, pp. 121-139
-
-
Kuboniwa, M.1
-
26
-
-
78650892286
-
Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii
-
Daep C.A., et al. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect. Immun. 2011, 79:67-74.
-
(2011)
Infect. Immun.
, vol.79
, pp. 67-74
-
-
Daep, C.A.1
-
27
-
-
79953284689
-
Metabolite cross-feeding enhances virulence in a model polymicrobial infection
-
Ramsey M.M., et al. Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog. 2011, 7:e1002012.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Ramsey, M.M.1
-
28
-
-
84901684205
-
Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection
-
Stacy A., et al. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:7819-7824.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 7819-7824
-
-
Stacy, A.1
-
29
-
-
58549109601
-
Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa
-
Pan Y., et al. Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa. Microb. Pathog. 2009, 46:73-79.
-
(2009)
Microb. Pathog.
, vol.46
, pp. 73-79
-
-
Pan, Y.1
-
30
-
-
84892479434
-
Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway
-
Li Q., et al. Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway. Microbes Infect. 2014, 16:17-27.
-
(2014)
Microbes Infect.
, vol.16
, pp. 17-27
-
-
Li, Q.1
-
31
-
-
0346887122
-
Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication
-
Duan K., et al. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 2003, 50:1477-1491.
-
(2003)
Mol. Microbiol.
, vol.50
, pp. 1477-1491
-
-
Duan, K.1
-
32
-
-
84870501494
-
Fucose sensing regulates bacterial intestinal colonization
-
Pacheco A.R., et al. Fucose sensing regulates bacterial intestinal colonization. Nature 2012, 492:113-117.
-
(2012)
Nature
, vol.492
, pp. 113-117
-
-
Pacheco, A.R.1
-
33
-
-
0036885883
-
Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA
-
Lawhon S.D., et al. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 2002, 46:1451-1464.
-
(2002)
Mol. Microbiol.
, vol.46
, pp. 1451-1464
-
-
Lawhon, S.D.1
-
34
-
-
62249157069
-
Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli
-
Nakanishi N., et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 2009, 155:521-530.
-
(2009)
Microbiology
, vol.155
, pp. 521-530
-
-
Nakanishi, N.1
-
35
-
-
84920613211
-
The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape
-
Curtis M.M., et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 2014, 16:759-769.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 759-769
-
-
Curtis, M.M.1
-
36
-
-
10244235264
-
Challenges in the quest for keystones
-
Power M.E., et al. Challenges in the quest for keystones. Bioscience 1996, 46:609-620.
-
(1996)
Bioscience
, vol.46
, pp. 609-620
-
-
Power, M.E.1
-
37
-
-
84867887781
-
The keystone-pathogen hypothesis
-
Hajishengallis G., et al. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 2012, 10:717-725.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 717-725
-
-
Hajishengallis, G.1
-
38
-
-
81755166205
-
Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement
-
Hajishengallis G., et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011, 10:497-506.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 497-506
-
-
Hajishengallis, G.1
-
39
-
-
84902458366
-
Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis
-
Maekawa T., et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 2014, 15:768-778.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 768-778
-
-
Maekawa, T.1
-
40
-
-
84904747868
-
The periodontal pathogen Porphyromonas gingivalis Induces expression of transposases and cell death of Streptococcus mitis in a biofilm model
-
Duran-Pinedo A.E., et al. The periodontal pathogen Porphyromonas gingivalis Induces expression of transposases and cell death of Streptococcus mitis in a biofilm model. Infect. Immun. 2014, 82:3374-3382.
-
(2014)
Infect. Immun.
, vol.82
, pp. 3374-3382
-
-
Duran-Pinedo, A.E.1
-
41
-
-
84861209251
-
Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model
-
Frias-Lopez J., Duran-Pinedo A. Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J. Bacteriol. 2012, 194:2082-2095.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 2082-2095
-
-
Frias-Lopez, J.1
Duran-Pinedo, A.2
-
42
-
-
84869006781
-
Beyond the red complex and into more complexity: the Polymicrobial Synergy and Dysbiosis (PSD) model of periodontal disease etiology
-
Hajishengallis G., Lamont R.J. Beyond the red complex and into more complexity: the Polymicrobial Synergy and Dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 2012, 27:409-419.
-
(2012)
Mol. Oral Microbiol.
, vol.27
, pp. 409-419
-
-
Hajishengallis, G.1
Lamont, R.J.2
-
43
-
-
84947429955
-
Individual members of the microbiota disproportionately modulate host innate immune responses
-
Rolig A.S., et al. Individual members of the microbiota disproportionately modulate host innate immune responses. Cell Host Microbe 2015, 18:613-620.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 613-620
-
-
Rolig, A.S.1
-
44
-
-
84904687373
-
Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression
-
Fisher C.K., Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 2014, 9:e102451.
-
(2014)
PLoS ONE
, vol.9
-
-
Fisher, C.K.1
Mehta, P.2
-
45
-
-
0029084396
-
Intestinal floras of populations that have a high risk of colon cancer
-
Moore W.E., Moore L.H. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 1995, 61:3202-3207.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 3202-3207
-
-
Moore, W.E.1
Moore, L.H.2
-
46
-
-
79751496164
-
Perspective: alpha-bugs, their microbial partners, and the link to colon cancer
-
Sears C.L., Pardoll D.M. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J. Infect. Dis. 2011, 203:306-311.
-
(2011)
J. Infect. Dis.
, vol.203
, pp. 306-311
-
-
Sears, C.L.1
Pardoll, D.M.2
-
47
-
-
84907487930
-
Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis
-
Sears C.L., et al. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Invest. 2014, 124:4166-4172.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 4166-4172
-
-
Sears, C.L.1
-
48
-
-
69949120571
-
A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses
-
Wu S., et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009, 15:1016-1022.
-
(2009)
Nat. Med.
, vol.15
, pp. 1016-1022
-
-
Wu, S.1
-
49
-
-
79951815749
-
Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer
-
Tosolini M., et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011, 71:1263-1271.
-
(2011)
Cancer Res.
, vol.71
, pp. 1263-1271
-
-
Tosolini, M.1
-
50
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round J.L., et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011, 332:974-977.
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
-
51
-
-
84863989936
-
A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects
-
Tjalsma H., et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 2012, 10:575-582.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 575-582
-
-
Tjalsma, H.1
-
52
-
-
77950187399
-
Microbial hijacking of complement-toll-like receptor crosstalk
-
ra11
-
Wang M., et al. Microbial hijacking of complement-toll-like receptor crosstalk. Sci. Signal. 2010, 3:ra11.
-
(2010)
Sci. Signal.
, vol.3
-
-
Wang, M.1
-
53
-
-
34848889673
-
Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system
-
Garrett W.S., et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007, 131:33-45.
-
(2007)
Cell
, vol.131
, pp. 33-45
-
-
Garrett, W.S.1
-
54
-
-
77956569409
-
Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis
-
Garrett W.S., et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010, 8:292-300.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 292-300
-
-
Garrett, W.S.1
-
55
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
-
56
-
-
84911397225
-
The inflammophilic character of the periodontitis-associated microbiota
-
Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol. Oral Microbiol. 2014, 29:248-257.
-
(2014)
Mol. Oral Microbiol.
, vol.29
, pp. 248-257
-
-
Hajishengallis, G.1
-
57
-
-
0027411540
-
Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties
-
Luo G., et al. Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect. Immun. 1993, 61:830-835.
-
(1993)
Infect. Immun.
, vol.61
, pp. 830-835
-
-
Luo, G.1
-
58
-
-
0025997335
-
Enhancement of growth of virulent strains of Escherichia coli by interleukin-1
-
Porat R., et al. Enhancement of growth of virulent strains of Escherichia coli by interleukin-1. Science 1991, 254:430-432.
-
(1991)
Science
, vol.254
, pp. 430-432
-
-
Porat, R.1
-
59
-
-
23044473600
-
Recognition of host immune activation by Pseudomonas aeruginosa
-
Wu L., et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science 2005, 309:774-777.
-
(2005)
Science
, vol.309
, pp. 774-777
-
-
Wu, L.1
-
60
-
-
77957157893
-
Gut inflammation provides a respiratory electron acceptor for Salmonella
-
Winter S.E., et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010, 467:426-429.
-
(2010)
Nature
, vol.467
, pp. 426-429
-
-
Winter, S.E.1
-
61
-
-
35649026345
-
Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota
-
Stecher B., et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007, 5:2177-2189.
-
(2007)
PLoS Biol.
, vol.5
, pp. 2177-2189
-
-
Stecher, B.1
-
62
-
-
84876408419
-
'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution
-
Stecher B., et al. 'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 2013, 11:277-284.
-
(2013)
Nat. Rev. Microbiol.
, vol.11
, pp. 277-284
-
-
Stecher, B.1
-
63
-
-
0037340434
-
Angiogenins: a new class of microbicidal proteins involved in innate immunity
-
Hooper L.V., et al. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 2003, 4:269-273.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 269-273
-
-
Hooper, L.V.1
-
64
-
-
0347756655
-
Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA
-
Kelly D., et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 2004, 5:104-112.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 104-112
-
-
Kelly, D.1
-
65
-
-
80052365606
-
Pathobionts of the gastrointestinal microbiota and inflammatory disease
-
Chow J., et al. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr. Opin. Immunol. 2011, 23:473-480.
-
(2011)
Curr. Opin. Immunol.
, vol.23
, pp. 473-480
-
-
Chow, J.1
-
66
-
-
84928175356
-
Distinct commensals induce Interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury
-
Seo S.U., et al. Distinct commensals induce Interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 2015, 42:744-755.
-
(2015)
Immunity
, vol.42
, pp. 744-755
-
-
Seo, S.U.1
-
67
-
-
84877871524
-
Induction of bone loss by pathobiont-mediated nod1 signaling in the oral cavity
-
Jiao Y., et al. Induction of bone loss by pathobiont-mediated nod1 signaling in the oral cavity. Cell Host Microbe 2013, 13:595-601.
-
(2013)
Cell Host Microbe
, vol.13
, pp. 595-601
-
-
Jiao, Y.1
-
68
-
-
84863436944
-
Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
-
Devkota S., et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 2012, 487:104-108.
-
(2012)
Nature
, vol.487
, pp. 104-108
-
-
Devkota, S.1
-
69
-
-
84926430592
-
Subgingival microbial communities in leukocyte adhesion deficiency and their relationship with local immunopathology
-
Moutsopoulos N.M., et al. Subgingival microbial communities in leukocyte adhesion deficiency and their relationship with local immunopathology. PLoS Pathog. 2015, 11:e1004698.
-
(2015)
PLoS Pathog.
, vol.11
-
-
Moutsopoulos, N.M.1
-
70
-
-
84899092312
-
Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss
-
Moutsopoulos N.M., et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci. Transl. Med. 2014, 6:229ra240.
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 229-240
-
-
Moutsopoulos, N.M.1
-
71
-
-
84874294771
-
Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection
-
Pastar I., et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS ONE 2013, 8:e56846.
-
(2013)
PLoS ONE
, vol.8
-
-
Pastar, I.1
-
72
-
-
84872538932
-
Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection
-
Korgaonkar A., et al. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1059-1064.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 1059-1064
-
-
Korgaonkar, A.1
-
73
-
-
84859912683
-
Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa
-
Twomey K.B., et al. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J. 2012, 6:939-950.
-
(2012)
ISME J.
, vol.6
, pp. 939-950
-
-
Twomey, K.B.1
-
74
-
-
84892478656
-
Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response
-
Xu H., et al. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell. Microbiol. 2014, 16:214-231.
-
(2014)
Cell. Microbiol.
, vol.16
, pp. 214-231
-
-
Xu, H.1
-
75
-
-
84876913132
-
Role of the gut microbiota in immunity and inflammatory disease
-
Kamada N., et al. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13:321-335.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 321-335
-
-
Kamada, N.1
-
76
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
77
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
78
-
-
84855796468
-
Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut
-
Fritz J.H., et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 2012, 481:199-203.
-
(2012)
Nature
, vol.481
, pp. 199-203
-
-
Fritz, J.H.1
-
79
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
Hooper L.V., et al. Interactions between the microbiota and the immune system. Science 2012, 336:1268-1273.
-
(2012)
Science
, vol.336
, pp. 1268-1273
-
-
Hooper, L.V.1
|