메뉴 건너뛰기




Volumn , Issue , 2015, Pages 683-693

Ontologically grounded multi-sense representation learning for semantic vector space models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; EMBEDDINGS; MAXIMUM LIKELIHOOD; ONTOLOGY; PREDICTIVE ANALYTICS; SEMANTICS; VECTORS;

EID: 84960146172     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/n15-1070     Document Type: Conference Paper
Times cited : (103)

References (44)
  • 3
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • New York, NY, USA ACM
    • Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning, ICML '08, pages 160-167, New York, NY, USA. ACM.
    • (2008) Proceedings of the 25th International Conference on Machine Learning, ICML '08 , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 5
    • 84859090981 scopus 로고    scopus 로고
    • Unsupervised partof-speech tagging with bilingual graph-based projections
    • Dipanjan Das and Slav Petrov. 2011. Unsupervised partof-speech tagging with bilingual graph-based projections. In Proc. of ACL.
    • (2011) Proc. of ACL
    • Das, D.1    Petrov, S.2
  • 6
    • 84859071149 scopus 로고    scopus 로고
    • Semisupervised frame-semantic parsing for unknown predicates
    • Dipanjan Das and Noah A. Smith. 2011. Semisupervised frame-semantic parsing for unknown predicates. In Proc. of ACL.
    • (2011) Proc. of ACL
    • Das, D.1    Smith, N.A.2
  • 9
  • 10
    • 84859980094 scopus 로고    scopus 로고
    • Exemplar-based models for word meaning in context
    • Association for Computational Linguistics
    • Katrin Erk and Sebastian Padó. 2010. Exemplar-based models for word meaning in context. In Proceedings of the ACL 2010 Conference Short Papers, pages 92-97. Association for Computational Linguistics.
    • (2010) Proceedings of the ACL 2010 Conference Short Papers , pp. 92-97
    • Erk, K.1    Padó, S.2
  • 13
    • 84900403426 scopus 로고    scopus 로고
    • PPDB: The paraphrase database
    • Atlanta, Georgia, June. Association for Computational Linguistics
    • Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. PPDB: The paraphrase database. In Proceedings of NAACL-HLT, pages 758-764, Atlanta, Georgia, June. Association for Computational Linguistics.
    • (2013) Proceedings of NAACL-HLT , pp. 758-764
    • Ganitkevitch, J.1    Van Durme, B.2    Callison-Burch, C.3
  • 14
    • 84926023443 scopus 로고    scopus 로고
    • Learning sense-specific word embeddings by exploiting bilingual resources
    • Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014. Learning sense-specific word embeddings by exploiting bilingual resources. In Proceedings of COLING, pages 497-507.
    • (2014) Proceedings of COLING , pp. 497-507
    • Guo, J.1    Che, W.2    Wang, H.3    Liu, T.4
  • 15
    • 84878180089 scopus 로고    scopus 로고
    • Improving word representations via global context and multiple word prototypes
    • Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. 2012. Improving word representations via global context and multiple word prototypes. In Proceedings of the 50th ACL: Long Papers-Volume 1, pages 873-882.
    • (2012) Proceedings of the 50th ACL: Long Papers , vol.1 , pp. 873-882
    • Huang, E.H.1    Socher, R.2    Manning, C.D.3    Ng, A.Y.4
  • 17
    • 80053381171 scopus 로고    scopus 로고
    • Why doesn't em find good hmm pos-taggers?
    • Citeseer
    • Mark Johnson. 2007. Why doesn't em find good hmm pos-taggers? In EMNLP-CoNLL, pages 296-305. Citeseer.
    • (2007) EMNLP-CoNLL , pp. 296-305
    • Johnson, M.1
  • 18
    • 0005638563 scopus 로고    scopus 로고
    • I don't believe in word senses
    • Adam Kilgarriff. 1997. I don't believe in word senses. Computers and the Humanities, 31(2):91-113.
    • (1997) Computers and the Humanities , vol.31 , Issue.2 , pp. 91-113
    • Kilgarriff, A.1
  • 19
    • 0000600219 scopus 로고    scopus 로고
    • A solution to plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
    • Thomas K Landauer and Susan T. Dumais. 1997. A solution to plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review, pages 211-240.
    • (1997) Psychological Review , pp. 211-240
    • Landauer, T.K.1    Dumais, S.T.2
  • 24
    • 84976702763 scopus 로고
    • Wordnet: A lexical database for english
    • George A Miller. 1995. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39-41.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 25
    • 84859927665 scopus 로고    scopus 로고
    • Vector-based models of semantic composition
    • Jeff Mitchell and Mirella Lapata. 2008. Vector-based models of semantic composition. In Proceedings of ACL-08: HLT, pages 236-244.
    • (2008) Proceedings of ACL-08: HLT , pp. 236-244
    • Mitchell, J.1    Lapata, M.2
  • 27
    • 84961311338 scopus 로고    scopus 로고
    • Efficient nonparametric estimation of multiple embeddings per word in vector space
    • Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. 2014. Efficient nonparametric estimation of multiple embeddings per word in vector space. In Proceedings of EMNLP.
    • (2014) Proceedings of EMNLP
    • Neelakantan, A.1    Shankar, J.2    Passos, A.3    McCallum, A.4
  • 29
    • 84907378938 scopus 로고    scopus 로고
    • Align, disambiguate and walk: A unified approach for measuring semantic similarity
    • Mohammad Taher Pilehvar, David Jurgens, and Roberto Navigli. 2013. Align, disambiguate and walk: A unified approach for measuring semantic similarity. In ACL (1), pages 1341-1351.
    • (2013) ACL , Issue.1 , pp. 1341-1351
    • Taher Pilehvar, M.1    Jurgens, D.2    Navigli, R.3
  • 30
    • 85050494677 scopus 로고    scopus 로고
    • Dynamic and static prototype vectors for semantic composition
    • Siva Reddy, Ioannis P Klapaftis, Diana McCarthy, and Suresh Manandhar. 2011. Dynamic and static prototype vectors for semantic composition. In IJCNLP, pages 705-713.
    • (2011) IJCNLP , pp. 705-713
    • Reddy, S.1    Klapaftis, I.P.2    McCarthy, D.3    Manandhar, S.4
  • 32
    • 84863873032 scopus 로고
    • Contextual correlates of synonymy
    • October
    • Herbert Rubenstein and John B. Goodenough. 1965. Contextual correlates of synonymy. Commun. ACM, 8(10):627-633, October.
    • (1965) Commun ACM , vol.8 , Issue.10 , pp. 627-633
    • Rubenstein, H.1    Goodenough, J.B.2
  • 34
    • 84858733268 scopus 로고    scopus 로고
    • Entropic graph regularization in non-parametric semisupervised classification
    • Amarnag Subramanya and Jeff A Bilmes. 2009. Entropic graph regularization in non-parametric semisupervised classification. In NIPS, pages 1803-1811.
    • (2009) NIPS , pp. 1803-1811
    • Subramanya, A.1    Bilmes, J.A.2
  • 35
    • 1542377556 scopus 로고    scopus 로고
    • Quantitative evaluation of passage retrieval algorithms for question answering
    • Stefanie Tellex, Boris Katz, Jimmy J. Lin, Aaron Fernandes, and Gregory Marton. 2003. Quantitative evaluation of passage retrieval algorithms for question answering. In SIGIR, pages 41-47.
    • (2003) SIGIR , pp. 41-47
    • Tellex, S.1    Katz, B.2    Lin, J.J.3    Fernandes, A.4    Marton, G.5
  • 36
    • 84883358913 scopus 로고    scopus 로고
    • Word meaning in context: A simple and effective vector model
    • Stefan Thater, Hagen Fürstenau, and Manfred Pinkal. 2011. Word meaning in context: A simple and effective vector model. In IJCNLP, pages 1134-1143.
    • (2011) IJCNLP , pp. 1134-1143
    • Thater, S.1    Fürstenau, H.2    Pinkal, M.3
  • 37
    • 84926011132 scopus 로고    scopus 로고
    • A probabilistic model for learning multi-prototype word embeddings
    • Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic model for learning multi-prototype word embeddings. In Proceedings of COLING, pages 151-160.
    • (2014) Proceedings of COLING , pp. 151-160
    • Tian, F.1    Dai, H.2    Bian, J.3    Gao, B.4    Zhang, R.5    Chen, E.6    Liu, T.7
  • 39
    • 33748661515 scopus 로고    scopus 로고
    • Similarity of semantic relations
    • September
    • Peter D. Turney. 2006. Similarity of semantic relations. Comput. Linguist., 32(3):379-416, September.
    • (2006) Comput. Linguist. , vol.32 , Issue.3 , pp. 379-416
    • Turney, P.D.1
  • 40
    • 84898980158 scopus 로고    scopus 로고
    • Distributional semantics beyond words: Supervised learning of analogy and paraphrase
    • Peter D Turney. 2013. Distributional semantics beyond words: Supervised learning of analogy and paraphrase. Transactions of the Association for Computational Linguistics, 1:353-366.
    • (2013) Transactions of the Association for Computational Linguistics , vol.1 , pp. 353-366
    • Turney, P.D.1
  • 43
    • 83055186332 scopus 로고    scopus 로고
    • It makes sense: A wide-coverage word sense disambiguation system for free text
    • Association for Computational Linguistics
    • Zhi Zhong and Hwee Tou Ng. 2010. It makes sense: A wide-coverage word sense disambiguation system for free text. In Proceedings of the ACL 2010 System Demonstrations, pages 78-83. Association for Computational Linguistics.
    • (2010) Proceedings of the ACL 2010 System Demonstrations , pp. 78-83
    • Zhong, Z.1    Tou Ng, H.2
  • 44
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. 2003. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, volume 3, pages 912-919.
    • (2003) ICML , vol.3 , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.