메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1119-1129

Injecting logical background knowledge into embeddings for relation extraction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER CIRCUITS; EMBEDDINGS; EXTRACTION; FACTORIZATION; FORMAL LOGIC; KNOWLEDGE BASED SYSTEMS; MATRIX ALGEBRA;

EID: 84960112525     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/n15-1118     Document Type: Conference Paper
Times cited : (283)

References (51)
  • 1
    • 0001011612 scopus 로고
    • Learning from hints in neural networks
    • Yaser S Abu-Mostafa. 1990. Learning from hints in neural networks. Journal of complexity, 6(2):192-198.
    • (1990) Journal of Complexity , vol.6 , Issue.2 , pp. 192-198
    • Abu-Mostafa, Y.S.1
  • 3
    • 84880864717 scopus 로고    scopus 로고
    • Completing description logic knowledge bases using formal concept analysis
    • Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. 2007. Completing description logic knowledge bases using formal concept analysis. In IJCAI, pages 230-235.
    • (2007) IJCAI , pp. 230-235
    • Baader, F.1    Ganter, B.2    Sertkaya, B.3    Sattler, U.4
  • 7
    • 85120807674 scopus 로고    scopus 로고
    • Learning structured embeddings of knowledge bases
    • Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. 2011. Learning structured embeddings of knowledge bases. In AAAI.
    • (2011) AAAI
    • Bordes, A.1    Weston, J.2    Collobert, R.3    Bengio, Y.4
  • 10
    • 85083952396 scopus 로고    scopus 로고
    • Can recursive neural tensor networks learn logical reasoning?
    • Samuel R Bowman. 2014. Can recursive neural tensor networks learn logical reasoning? In ICLR'14.
    • (2014) ICLR'14
    • Bowman, S.R.1
  • 15
    • 84904336038 scopus 로고    scopus 로고
    • Rule-based information extraction is dead! long live rule-based information extraction systems!
    • Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. 2013. Rule-based information extraction is dead! long live rule-based information extraction systems! In Empirical Methods in Natural Language Processing (EMNLP), pages 827-832.
    • (2013) Empirical Methods in Natural Language Processing (EMNLP) , pp. 827-832
    • Chiticariu, L.1    Li, Y.2    Reiss, F.R.3
  • 16
  • 17
    • 84926347057 scopus 로고    scopus 로고
    • Mathematical foundations for a compositional distributional model of meaning
    • abs/1003.4394
    • Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. 2010. Mathematical foundations for a compositional distributional model of meaning. CoRR, abs/1003.4394.
    • (2010) CoRR
    • Coecke, B.1    Sadrzadeh, M.2    Clark, S.3
  • 19
    • 84926283782 scopus 로고    scopus 로고
    • Unsupervised relation extraction with general domain knowledge
    • Oier Lopez de Lacalle and Mirella Lapata. 2013. Unsupervised relation extraction with general domain knowledge. In EMNLP, pages 415-425.
    • (2013) EMNLP , pp. 415-425
    • De Lacalle, O.L.1    Lapata, M.2
  • 21
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 24
    • 84867306903 scopus 로고    scopus 로고
    • Integrating logical representations with probabilistic information using markov logic
    • Association for Computational Linguistics
    • Dan Garrette, Katrin Erk, and Raymond Mooney. 2011. Integrating logical representations with probabilistic information using markov logic. In Proceedings of the Ninth International Conference on Computational Semantics, pages 105-114. Association for Computational Linguistics.
    • (2011) Proceedings of the Ninth International Conference on Computational Semantics , pp. 105-114
    • Garrette, D.1    Erk, K.2    Mooney, R.3
  • 26
    • 84906929292 scopus 로고    scopus 로고
    • The role of syntax in vector space models of compositional semantics
    • Karl Moritz Hermann and Phil Blunsom. 2013. The role of syntax in vector space models of compositional semantics. In Proc. of ACL, pages 894-904.
    • (2013) Proc. of ACL , pp. 894-904
    • Hermann, K.M.1    Blunsom, P.2
  • 27
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mininga general survey and comparison
    • Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. 2000. Algorithms for association rule mininga general survey and comparison. ACM sigkdd explorations newsletter, 2(1):58-64.
    • (2000) ACM Sigkdd Explorations Newsletter , vol.2 , Issue.1 , pp. 58-64
    • Hipp, J.1    Güntzer, U.2    Nakhaeizadeh, G.3
  • 28
    • 10944269335 scopus 로고    scopus 로고
    • Logic programs and connectionist networks
    • Pascal Hitzler, Steffen Hölldobler, and Anthony Karel Seda. 2004. Logic programs and connectionist networks. Journal of Applied Logic, 2(3):245-272.
    • (2004) Journal of Applied Logic , vol.2 , Issue.3 , pp. 245-272
    • Hitzler, P.1    Hölldobler, S.2    Seda, A.K.3
  • 30
    • 0344671619 scopus 로고    scopus 로고
    • Approximating the semantics of logic programs by recurrent neural networks
    • Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr. 1999. Approximating the semantics of logic programs by recurrent neural networks. Appl. Intell., 11(1):45-58.
    • (1999) Appl. Intell. , vol.11 , Issue.1 , pp. 45-58
    • Hölldobler, S.1    Kalinke, Y.2    Störr, H.-P.3
  • 34
    • 84859927665 scopus 로고    scopus 로고
    • Vector-based models of semantic composition
    • Jeff Mitchell and Mirella Lapata. 2008. Vector-based models of semantic composition. In Proc. of ACL, pages 236-244.
    • (2008) Proc. of ACL , pp. 236-244
    • Mitchell, J.1    Lapata, M.2
  • 35
    • 84860859524 scopus 로고    scopus 로고
    • Factorizing yago: Scalable machine learning for linked data
    • Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2012. Factorizing yago: scalable machine learning for linked data. In Proc. of WWW, pages 271-280.
    • (2012) Proc. of WWW , pp. 271-280
    • Nickel, M.1    Tresp, V.2    Kriegel, H.-P.3
  • 37
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • Matthew Richardson and Pedro Domingos. 2006. Markov logic networks. Machine Learning, 62(1-2):107-136.
    • (2006) Machine Learning , vol.62 , Issue.1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 38
    • 84926180274 scopus 로고    scopus 로고
    • Relation extraction with matrix factorization and universal schemas
    • Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. 2013. Relation extraction with matrix factorization and universal schemas. In Proceedings of NAACL-HLT, pages 74-84.
    • (2013) Proceedings of NAACL-HLT , pp. 74-84
    • Riedel, S.1    Yao, L.2    McCallum, A.3    Marlin, B.M.4
  • 44
    • 84898956227 scopus 로고    scopus 로고
    • Reasoning with neural tensor networks for knowledge base completion
    • Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013. Reasoning with neural tensor networks for knowledge base completion. In NIPS, pages 926-934.
    • (2013) NIPS , pp. 926-934
    • Socher, R.1    Chen, D.2    Manning, C.D.3    Ng, A.Y.4
  • 46
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Geoffrey G Towell and Jude W Shavlik. 1994. Knowledge-based artificial neural networks. Artificial intelligence, 70(1):119-165.
    • (1994) Artificial Intelligence , vol.70 , Issue.1 , pp. 119-165
    • Towell, G.G.1    Shavlik, J.W.2
  • 48
    • 84862653732 scopus 로고    scopus 로고
    • Probase: A probabilistic taxonomy for text understanding
    • Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. 2012. Probase: A probabilistic taxonomy for text understanding. In Proceedings of the 2012 ACM
    • (2012) Proceedings of the 2012 ACM
    • Wu, W.1    Li, H.2    Wang, H.3    Zhu, K.Q.4
  • 51
    • 36348934176 scopus 로고    scopus 로고
    • Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars
    • Luke S Zettlemoyer and Michael Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In Uncertainty in Artifical Intelligence (UAI).
    • (2005) Uncertainty in Artifical Intelligence (UAI)
    • Zettlemoyer, L.S.1    Collins, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.