메뉴 건너뛰기




Volumn , Issue , 2010, Pages 73-81

Minimally-supervised extraction of entities from text advertisements

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY IMPROVEMENT; COMPUTATIONAL ADVERTISINGS; CONDITIONAL RANDOM FIELD; CONSTRAINT-BASED; CREATIVES; ENTITY EXTRACTIONS; LABELED DATA; LARGE AMOUNTS OF DATA; LIGHT WEIGHT; ONLINE LEARNING ALGORITHMS; SEMI-MARKOV; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SUPERVISED CLASSIFIERS; TEST SETS; UNLABELED DATA;

EID: 84863338186     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (24)
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John Lafferty, Andrew Mccallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML: International Conference on Machine Learning, pages 282-289.
    • (2001) ICML: International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.1    Mccallum, A.2    Pereira, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.