메뉴 건너뛰기




Volumn 55, Issue , 2016, Pages 417-428

Multiple partial discharge source discrimination with multiclass support vector machines

Author keywords

Condition monitoring; Electric maintenance; Machine learning; Partial discharges; Risk assessment; Support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONDITION MONITORING; DECISION MAKING; DECOMMISSIONING (NUCLEAR REACTORS); ELECTRIC POWER TRANSMISSION NETWORKS; EQUIPMENT; FREQUENCY DOMAIN ANALYSIS; LEARNING SYSTEMS; MAINTENANCE; PARTIAL DISCHARGES; RISK ASSESSMENT; VECTORS;

EID: 84960097967     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2016.02.014     Document Type: Article
Times cited : (58)

References (33)
  • 1
    • 78649955091 scopus 로고    scopus 로고
    • A method for discriminating original pulses in online partial discharge measurement
    • Allahbakhshi M., and Akbari A. A method for discriminating original pulses in online partial discharge measurement Measurement 44 1 2011 148 158 http://dx.doi.org/10.1016/j.measurement.2010.09.036
    • (2011) Measurement , vol.44 , Issue.1 , pp. 148-158
    • Allahbakhshi, M.1    Akbari, A.2
  • 5
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • ACM (Association for Computing Machinery)
    • Boser B.E., Guyon I., and Vapnik V. A training algorithm for optimal margin classifiers Computational learning theory 1992 ACM (Association for Computing Machinery) 144 152
    • (1992) Computational Learning Theory , pp. 144-152
    • Boser, B.E.1    Guyon, I.2    Vapnik, V.3
  • 6
    • 0037667684 scopus 로고    scopus 로고
    • A new approach to the diagnosis of solid insulation systems based on PD signal inference
    • Cavallini A., Montanari G., Contin A., and Pulletti F. A new approach to the diagnosis of solid insulation systems based on PD signal inference IEEE Electrical Insulation Magazine 19 2 2003 22 30
    • (2003) IEEE Electrical Insulation Magazine , vol.19 , Issue.2 , pp. 22-30
    • Cavallini, A.1    Montanari, G.2    Contin, A.3    Pulletti, F.4
  • 7
    • 80255124876 scopus 로고    scopus 로고
    • A novel extension neural network based partial discharge pattern recognition method for high-voltage power apparatus
    • Chen H.-C., Gu F.-C., and Wang M.-H. A novel extension neural network based partial discharge pattern recognition method for high-voltage power apparatus Expert Systems with Applications 39 3 2012 3423 3431 http://dx.doi.org/10.1016/j.eswa.2011.09.030
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3423-3431
    • Chen, H.-C.1    Gu, F.-C.2    Wang, M.-H.3
  • 11
    • 42549155580 scopus 로고    scopus 로고
    • Improving detection sensitivity for partial discharge monitoring of high voltage equipment
    • Hao L., Lewin P., and Swingler S. Improving detection sensitivity for partial discharge monitoring of high voltage equipment Measurement Science and Technology 19 5 2008 055707:1 055707:10
    • (2008) Measurement Science and Technology , vol.19 , Issue.5 , pp. 0557071-05570710
    • Hao, L.1    Lewin, P.2    Swingler, S.3
  • 14
    • 84960145000 scopus 로고    scopus 로고
    • IEC (2000). High voltage test techniques. partial discharge measurements. IEC 60270 (3rd ed.).
    • IEC (2000). High voltage test techniques. partial discharge measurements. IEC 60270 (3rd ed.).
  • 15
    • 84960145001 scopus 로고    scopus 로고
    • On-line partial discharge measurements on the stator winding insulation of rotating electrical machines
    • IEC (2012). Rotating electrical machines- part 27-2: On-line partial discharge measurements on the stator winding insulation of rotating electrical machines. IEC 60034-27-2.
    • IEC (2012). Rotating electrical machines- part 27-2: On-line partial discharge measurements on the stator winding insulation of rotating electrical machines. IEC 60034-27-2.
    • (2012) Rotating Electrical Machines
  • 17
    • 77549083026 scopus 로고    scopus 로고
    • Artificial identification system for transformer insulation aging
    • Kuo C.-C. Artificial identification system for transformer insulation aging Expert Systems with Applications 37 6 2010 4190 4197 http://dx.doi.org/10.1016/j.eswa.2009.11.004
    • (2010) Expert Systems with Applications , vol.37 , Issue.6 , pp. 4190-4197
    • Kuo, C.-C.1
  • 18
    • 84907487445 scopus 로고    scopus 로고
    • Improving pattern recognition accuracy of partial discharges by new data preprocessing methods
    • Majidi M., and Oskuoee M. Improving pattern recognition accuracy of partial discharges by new data preprocessing methods Electric Power Systems Research 119 2015 100 110 http://dx.doi.org/10.1016/j.epsr.2014.09.014
    • (2015) Electric Power Systems Research , vol.119 , pp. 100-110
    • Majidi, M.1    Oskuoee, M.2
  • 20
    • 84877738019 scopus 로고    scopus 로고
    • Partial discharge diagnostics: from apparatus monitoring to smart grid assessment
    • Montanari G., and Cavallini A. Partial discharge diagnostics: from apparatus monitoring to smart grid assessment Electrical Insulation Magazine, IEEE 29 3 2013 8 17 10.1109/MEI.2013.6507409
    • (2013) Electrical Insulation Magazine, IEEE , vol.29 , Issue.3 , pp. 8-17
    • Montanari, G.1    Cavallini, A.2
  • 21
    • 77957903388 scopus 로고    scopus 로고
    • Partial discharge-induced degradation characteristics of insulating structure constituting oil-immersed power transformers
    • Okabe S., Ueta G., Wada H., and Okubo H. Partial discharge-induced degradation characteristics of insulating structure constituting oil-immersed power transformers IEEE Transactions on Dielectrics and Electrical Insulation 17 5 2010 1649 1656 10.1109/TDEI.2010.5595570
    • (2010) IEEE Transactions on Dielectrics and Electrical Insulation , vol.17 , Issue.5 , pp. 1649-1656
    • Okabe, S.1    Ueta, G.2    Wada, H.3    Okubo, H.4
  • 22
    • 78650586389 scopus 로고    scopus 로고
    • Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines
    • de Oliveira Mota H., da Rocha L.C.D., de Moura Salles T.C., and Vasconcelos F.H. Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines Electric Power Systems Research 81 2 2011 644 659 http://dx.doi.org/10.1016/j.epsr.2010.10.030
    • (2011) Electric Power Systems Research , vol.81 , Issue.2 , pp. 644-659
    • De Oliveira Mota, H.1    Da Rocha, L.C.D.2    De Moura Salles, T.C.3    Vasconcelos, F.H.4
  • 23
    • 84924974508 scopus 로고    scopus 로고
    • Partial discharge classifications: Review of recent progress
    • Raymond W.J.K., Illias H.A., Bakar A.H.A., and Mokhlis H. Partial discharge classifications: review of recent progress Measurement 68 2015 164 181 http://dx.doi.org/10.1016/j.measurement.2015.02.032
    • (2015) Measurement , vol.68 , pp. 164-181
    • Raymond, W.J.K.1    Illias, H.A.2    Bakar, A.H.A.3    Mokhlis, H.4
  • 27
    • 5044246962 scopus 로고    scopus 로고
    • Effect of manufacturer, winding age and insulation type on stator winding partial discharge levels
    • Stone G., and Warren V. Effect of manufacturer, winding age and insulation type on stator winding partial discharge levels Electrical Insulation Magazine, IEEE 20 5 2004 13 17 10.1109/MEI.2004.1342428
    • (2004) Electrical Insulation Magazine, IEEE , vol.20 , Issue.5 , pp. 13-17
    • Stone, G.1    Warren, V.2
  • 28
    • 79952445682 scopus 로고    scopus 로고
    • Orthogonal least square center selection technique. A robust scheme for multiple source - Partial Discharge pattern recognition using radial basis probabilistic neural network
    • Venkatesh S., and Gopal S. Orthogonal least square center selection technique. A robust scheme for multiple source - Partial Discharge pattern recognition using radial basis probabilistic neural network Expert Systems with Applications 38 7 2011 8978 8989 http://dx.doi.org/10.1016/j.eswa.2011.01.115
    • (2011) Expert Systems with Applications , vol.38 , Issue.7 , pp. 8978-8989
    • Venkatesh, S.1    Gopal, S.2
  • 29
    • 79955573457 scopus 로고    scopus 로고
    • Robust heteroscedastic probabilistic neural network for multiple source partial discharge pattern recognition - Significance of outliers on classification capability
    • Venkatesh S., and Gopal S. Robust heteroscedastic probabilistic neural network for multiple source partial discharge pattern recognition - Significance of outliers on classification capability Expert Systems with Applications 38 9 2011 11501 11514 http://dx.doi.org/10.1016/j.eswa.2011.03.026
    • (2011) Expert Systems with Applications , vol.38 , Issue.9 , pp. 11501-11514
    • Venkatesh, S.1    Gopal, S.2
  • 30
    • 72149105053 scopus 로고    scopus 로고
    • Identification of two-phase flow regimes based on support vector machine and electrical capacitance tomography
    • Wang H.X., and Zhang L.F. Identification of two-phase flow regimes based on support vector machine and electrical capacitance tomography Measurement Science and Technology 20 11 2009 114007
    • (2009) Measurement Science and Technology , vol.20 , Issue.11 , pp. 114007
    • Wang, H.X.1    Zhang, L.F.2
  • 31
    • 84928156270 scopus 로고    scopus 로고
    • A hybrid algorithm based on s transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources
    • Wang K., Li J., Zhang S., Liao R., Wu F., and Yang L. Yan J. A hybrid algorithm based on s transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources IEEE Transactions on Dielectrics and Electrical Insulation 22 2 2015 1042 1060 10.1109/TDEI.2015.7076806
    • (2015) IEEE Transactions on Dielectrics and Electrical Insulation , vol.22 , Issue.2 , pp. 1042-1060
    • Wang, K.1    Li, J.2    Zhang, S.3    Liao, R.4    Wu, F.5    Yang, L.6    Yan, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.