메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages 2195-2201

Phrase type sensitive tensor indexing model for semantic composition

Author keywords

[No Author keywords available]

Indexed keywords

SEMANTICS; TENSORS;

EID: 84959929426     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (28)
  • 2
    • 78650686637 scopus 로고    scopus 로고
    • Distributional memory: A general framework for corpus-based semantics
    • Baroni, M., and Lenci, A. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4):673-721.
    • (2010) Computational Linguistics , vol.36 , Issue.4 , pp. 673-721
    • Baroni, M.1    Lenci, A.2
  • 3
    • 80053232678 scopus 로고    scopus 로고
    • Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space
    • Association for Computational Linguistics
    • Baroni, M., and Zamparelli, R. 2010. Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In Proceedings of EMNLP, 1183-1193. Association for Computational Linguistics.
    • (2010) Proceedings of EMNLP , pp. 1183-1193
    • Baroni, M.1    Zamparelli, R.2
  • 4
    • 84870673011 scopus 로고    scopus 로고
    • A comparison of vector-based representations for semantic composition
    • Association for Computational Linguistics
    • Blacoe, W., and Lapata, M. 2012. A comparison of vector-based representations for semantic composition. In Proceedings of EMNLP, 546-556. Association for Computational Linguistics.
    • (2012) Proceedings of EMNLP , pp. 546-556
    • Blacoe, W.1    Lapata, M.2
  • 5
    • 70449371517 scopus 로고    scopus 로고
    • On the tensor SVD and the optimal low rank orthogonal approximation of tensors
    • Chen, J., and Saad, Y 2009. On the tensor svd and the optimal low rank orthogonal approximation of tensors. SIAM Journal on Matrix Analysis and Applications 30(4): 1709-1734.
    • (2009) SIAM Journal on Matrix Analysis and Applications , vol.30 , Issue.4 , pp. 1709-1734
    • Chen, J.1    Saad, Y.2
  • 8
    • 84856190967 scopus 로고    scopus 로고
    • A context-theoretic framework for compo-sitionality in distributional semantics
    • Clarke, D. 2012. A context-theoretic framework for compo-sitionality in distributional semantics. Computational Linguistics 38(1):41-71.
    • (2012) Computational Linguistics , vol.38 , Issue.1 , pp. 41-71
    • Clarke, D.1
  • 9
    • 84926347057 scopus 로고    scopus 로고
    • Mathematical foundations for a compositional distributional model of meaning
    • abs/1003.4394
    • Coecke, B.; Sadrzadeh, M.; and Clark, S. 2010. Mathematical foundations for a compositional distributional model of meaning. CoRR abs/1003.4394.
    • (2010) CoRR
    • Coecke, B.1    Sadrzadeh, M.2    Clark, S.3
  • 11
    • 80053377616 scopus 로고    scopus 로고
    • A structured vector space model for word meaning in context
    • Association for Computational Linguistics
    • Erk, K., and Padó, S. 2008. A structured vector space model for word meaning in context. In Proceedings of EMNLP, 897-906. Association for Computational Linguistics.
    • (2008) Proceedings of EMNLP , pp. 897-906
    • Erk, K.1    Padó, S.2
  • 12
    • 80053235817 scopus 로고    scopus 로고
    • Experimental support for a categorical compositional distributional model of meaning
    • Association for Computational Linguistics
    • Grefenstette, E., and Sadrzadeh, M. 2011. Experimental support for a categorical compositional distributional model of meaning. In Proceedings of EMNLP, 1394-1404. Association for Computational Linguistics.
    • (2011) Proceedings of EMNLP , pp. 1394-1404
    • Grefenstette, E.1    Sadrzadeh, M.2
  • 13
    • 84943741021 scopus 로고    scopus 로고
    • Multi-step regression learning for compositional distributional semantics
    • Grefenstette, E.; Dinu, G.; Zhang, Y.-Z.; Sadrzadeh, M.; and Baroni, M. 2013. Multi-step regression learning for compositional distributional semantics. IWCS.
    • (2013) IWCS
    • Grefenstette, E.1    Dinu, G.2    Zhang, Y.-Z.3    Sadrzadeh, M.4    Baroni, M.5
  • 15
    • 84977872928 scopus 로고    scopus 로고
    • Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment
    • Marcili, M.; Bentivogli, L.; Baroni, M.; Bernardi, R.; Menini, S.; and Zamparelli, R. 2014. Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. SemEval-2014.
    • (2014) SemEval-2014
    • Marcili, M.1    Bentivogli, L.2    Baroni, M.3    Bernardi, R.4    Menini, S.5    Zamparelli, R.6
  • 17
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic regularities in continuous space word representations. In Proceedings of NAACL-HLT, 746-751.
    • (2013) Proceedings of NAACL-HLT , pp. 746-751
    • Mikolov, T.1    Yih, W.-T.2    Zweig, G.3
  • 18
    • 80053288309 scopus 로고    scopus 로고
    • Composition in distributional models of semantics
    • Mitchell, J., and Lapata, M. 2010. Composition in distributional models of semantics. Cognitive science 34(8).T388-1429.
    • (2010) Cognitive Science , vol.34 , Issue.8 , pp. T388-1429
    • Mitchell, J.1    Lapata, M.2
  • 19
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • Socher, R.; Huang, E. H.; Pennington, J.; Ng, A. Y.; and Manning, C. D. 2011a. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS, volume 24, 801-809.
    • (2011) NIPS , vol.24 , pp. 801-809
    • Socher, R.1    Huang, E.H.2    Pennington, J.3    Ng, A.Y.4    Manning, C.D.5
  • 20
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • Association for Computational Linguistics
    • Socher, R.; Pennington, J.; Huang, E. H.; Ng, A. Y; and Manning, C. D. 2011b. Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of EMNLP, 151-161. Association for Computational Linguistics.
    • (2011) Proceedings of EMNLP , pp. 151-161
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 21
    • 84870715081 scopus 로고    scopus 로고
    • Semantic compositionality through recursive matrix-vector spaces
    • Socher, R.; Huval. B.; Manning, C. D.; and Ng, A. Y. 2012. Semantic compositionality through recursive matrix-vector spaces. In Proceedings of EMNLP-CoNLL, 1201-1211.
    • (2012) Proceedings of EMNLP-CoNLL , pp. 1201-1211
    • Socher, R.1    Huval, B.2    Manning, C.D.3    Ng, A.Y.4
  • 23
    • 84898956227 scopus 로고    scopus 로고
    • Reasoning with neural tensor networks for knowledge base completion
    • Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013b. Reasoning with neural tensor networks for knowledge base completion. In Proceedings of NIPS, 926-934.
    • (2013) Proceedings of NIPS , pp. 926-934
    • Socher, R.1    Chen, D.2    Manning, C.D.3    Ng, A.4
  • 25
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network
    • Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of ACL-HLT, 173-180.
    • (2003) Proceedings of ACL-HLT , pp. 173-180
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3    Singer, Y.4
  • 26
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning: Vector space models of semantics
    • Turney, P., and Pantel, P. 2010. From frequency to meaning: Vector space models of semantics. Journal of artificial intelligence research 37(1): 141-188.
    • (2010) Journal of Artificial Intelligence Research , vol.37 , Issue.1 , pp. 141-188
    • Turney, P.1    Pantel, P.2
  • 27
    • 80053240499 scopus 로고    scopus 로고
    • Compositional matrix-space models for sentiment analysis
    • Yessenalina, A., and Cardie, C. 2011. Compositional matrix-space models for sentiment analysis. In Proceedings of EMNLP, 172-182.
    • (2011) Proceedings of EMNLP , pp. 172-182
    • Yessenalina, A.1    Cardie, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.