메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1422-1432

Document modeling with gated recurrent neural network for sentiment classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); INFORMATION RETRIEVAL SYSTEMS; LARGE DATASET; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS;

EID: 84959928037     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d15-1167     Document Type: Conference Paper
Times cited : (1516)

References (58)
  • 1
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
    • Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL, pages 238-247.
    • (2014) ACL , pp. 238-247
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 5
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using rnn encoder-decoder for statistical machine translation
    • Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In EMNLP, pages 1724-1734.
    • (2014) EMNLP , pp. 1724-1734
    • Cho, K.1    Van Merrienboer, B.2    Gulcehre, C.3    Bahdanau, D.4    Bougares, F.5    Schwenk, H.6    Bengio, Y.7
  • 6
    • 84969972350 scopus 로고    scopus 로고
    • Gated feedback recurrent neural networks
    • Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2015. Gated feedback recurrent neural networks. ICML.
    • (2015) ICML
    • Chung, J.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 8
    • 84907027192 scopus 로고    scopus 로고
    • Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars)
    • ACM
    • Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J Smola, Jing Jiang, and Chong Wang. 2014. Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars). In SIGKDD, pages 193-202. ACM.
    • (2014) SIGKDD , pp. 193-202
    • Diao, Q.1    Qiu, M.2    Wu, C.3    Smola, A.J.4    Jiang, J.5    Wang, C.6
  • 9
    • 84908161392 scopus 로고    scopus 로고
    • Adaptive multi-compositionality for recursive neural models with applications to sentiment analysis
    • Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014. Adaptive multi-compositionality for recursive neural models with applications to sentiment analysis. In AAAI, pages 1537-1543.
    • (2014) AAAI , pp. 1537-1543
    • Dong, L.1    Wei, F.2    Zhou, M.3    Xu, K.4
  • 11
    • 84926003830 scopus 로고
    • On sense and reference
    • Gottlob Frege. 1892. On sense and reference. Ludlow (1997), pages 563-584.
    • (1892) Ludlow (1997) , pp. 563-584
    • Frege, G.1
  • 12
    • 79957953803 scopus 로고    scopus 로고
    • Beyond the stars: Improving rating predictions using review text content
    • Gayatree Ganu, Noemie Elhadad, and Amélie Marian. 2009. Beyond the stars: Improving rating predictions using review text content. In WebDB.
    • (2009) WebDB
    • Ganu, G.1    Elhadad, N.2    Amélie Marian3
  • 13
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML, pages 513-520.
    • (2011) ICML , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 14
    • 85081790022 scopus 로고    scopus 로고
    • Seeing stars when there aren't many stars: Graph-based semisupervised learning for sentiment categorization
    • Andrew B Goldberg and Xiaojin Zhu. 2006. Seeing stars when there aren't many stars: graph-based semisupervised learning for sentiment categorization. In GraphBased Method for NLP, pages 45-52.
    • (2006) GraphBased Method for NLP , pp. 45-52
    • Goldberg, A.B.1    Zhu, X.2
  • 16
    • 84906929292 scopus 로고    scopus 로고
    • The role of syntax in vector space models of compositional semantics
    • Karl Moritz Hermann and Phil Blunsom. 2013. The role of syntax in vector space models of compositional semantics. In ACL, pages 894-904.
    • (2013) ACL , pp. 894-904
    • Moritz Hermann, K.1    Blunsom, P.2
  • 18
    • 84937828128 scopus 로고    scopus 로고
    • Deep recursive neural networks for compositionality in language
    • Ozan Irsoy and Claire Cardie. 2014. Deep recursive neural networks for compositionality in language. In NIPS, pages 2096-2104.
    • (2014) NIPS , pp. 2096-2104
    • Irsoy, O.1    Cardie, C.2
  • 19
    • 84960120039 scopus 로고    scopus 로고
    • Effective use of word order for text categorization with convolutional neural networks
    • Rie Johnson and Tong Zhang. 2015. Effective use of word order for text categorization with convolutional neural networks. NAACL.
    • (2015) NAACL
    • Johnson, R.1    Zhang, T.2
  • 21
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. In ACL, pages 655-665.
    • (2014) ACL , pp. 655-665
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 22
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Yoon Kim. 2014. Convolutional neural networks for sentence classification. In EMNLP, pages 1746-1751.
    • (2014) EMNLP , pp. 1746-1751
    • Kim, Y.1
  • 25
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In ICML, pages 1188-1196.
    • (2014) ICML , pp. 1188-1196
    • Le, Q.V.1    Mikolov, T.2
  • 30
    • 84859023447 scopus 로고    scopus 로고
    • Learning word vectors for sentiment analysis
    • Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In ACL, pages 142-150.
    • (2011) ACL , pp. 142-150
    • Maas, A.L.1    Daly, R.E.2    Pham, P.T.3    Huang, D.4    Ng, A.Y.5    Potts, C.6
  • 32
    • 85117622017 scopus 로고    scopus 로고
    • The Stanford corenlp natural language processing toolkit
    • Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bernard, and David McClosky. 2014. The Stanford corenlp natural language processing toolkit. In ACL, pages 55-60.
    • (2014) ACL , pp. 55-60
    • Manning, C.1    Surdeanu, M.2    Bauer, J.3    Finkel, J.4    Bernard, S.5    McClosky, D.6
  • 33
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 34
    • 80053288309 scopus 로고    scopus 로고
    • Composition in distributional models of semantics
    • Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive Science, 34(8):1388-1429.
    • (2010) Cognitive Science , vol.34 , Issue.8 , pp. 1388-1429
    • Mitchell, J.1    Lapata, M.2
  • 36
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115-124.
    • (2005) ACL , pp. 115-124
    • Pang, B.1    Lee, L.2
  • 38
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: sentiment classification using machine learning techniques. In EMNLP, pages 79-86.
    • (2002) EMNLP , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 39
    • 84937909554 scopus 로고    scopus 로고
    • Global belief recursive neural networks
    • Romain Paulus, Richard Socher, and Christopher D Manning. 2014. Global belief recursive neural networks. In NIPS, pages 2888-2896.
    • (2014) NIPS , pp. 2888-2896
    • Paulus, R.1    Socher, R.2    Manning, C.D.3
  • 40
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In EMNLP, pages 1532-1543.
    • (2014) EMNLP , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 41
    • 80053399207 scopus 로고    scopus 로고
    • The bag-of-opinions method for review rating prediction from sparse text patterns
    • Lizhen Qu, Georgiana Ifrim, and Gerhard Weikum. 2010. The bag-of-opinions method for review rating prediction from sparse text patterns. In COLING, pages 913-921.
    • (2010) COLING , pp. 913-921
    • Qu, L.1    Ifrim, G.2    Weikum, G.3
  • 42
    • 84893795422 scopus 로고    scopus 로고
    • Parsing with compositional vector grammars
    • Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013a. Parsing with compositional vector grammars. In ACL.
    • (2013) ACL
    • Socher, R.1    Bauer, J.2    Manning, C.D.3    Ng, A.Y.4
  • 43
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013b. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, pages 1631-1642.
    • (2013) EMNLP , pp. 1631-1642
    • Socher, R.1    Perelygin, A.2    Wu, J.3    Chuang, J.4    Manning, C.D.5    Ng, A.6    Potts, C.7
  • 44
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112.
    • (2014) NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 45
    • 84943797465 scopus 로고    scopus 로고
    • Improved semantic representations from tree-structured long short-term memory networks
    • Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. In ACL.
    • (2015) ACL
    • Sheng Tai, K.1    Socher, R.2    Manning, C.D.3
  • 46
    • 84906924350 scopus 로고    scopus 로고
    • Learning sentiment-specific word embedding for twitter sentiment classification
    • Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014. Learning sentiment-specific word embedding for twitter sentiment classification. In ACL, pages 1555-1565.
    • (2014) ACL , pp. 1555-1565
    • Tang, D.1    Wei, F.2    Yang, N.3    Zhou, M.4    Liu, T.5    Qin, B.6
  • 47
    • 84943784260 scopus 로고    scopus 로고
    • Learning semantic representations of users and products for document level sentiment classification
    • Duyu Tang, Bing Qin, and Ting Liu. 2015. Learning semantic representations of users and products for document level sentiment classification. In ACL, pages 1014-1023.
    • (2015) ACL , pp. 1014-1023
    • Tang, D.1    Qin, B.2    Liu, T.3
  • 48
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews
    • Peter D Turney. 2002. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In ACL, pages 417-424.
    • (2002) ACL , pp. 417-424
    • Turney, P.D.1
  • 49
    • 84875872773 scopus 로고    scopus 로고
    • Baselines and bigrams: Simple, good sentiment and topic classification
    • Sida Wang and Christopher D Manning. 2012. Baselines and bigrams: Simple, good sentiment and topic classification. In ACL, pages 90-94.
    • (2012) ACL , pp. 90-94
    • Wang, S.1    Manning, C.D.2
  • 50
    • 79251597226 scopus 로고    scopus 로고
    • Exploring the use of word relation features for sentiment classification
    • Rui Xia and Chengqing Zong. 2010. Exploring the use of word relation features for sentiment classification. In COLING, pages 1336-1344.
    • (2010) COLING , pp. 1336-1344
    • Xia, R.1    Zong, C.2
  • 51
    • 84943808723 scopus 로고    scopus 로고
    • Joint opinion relation detection using one-class deep neural network
    • Liheng Xu, Kang Liu, and Jun. Zhao. 2014. Joint opinion relation detection using one-class deep neural network. In COLING, pages 677-687.
    • (2014) COLING , pp. 677-687
    • Xu, L.1    Liu, K.2    Jun. Zhao3
  • 52
    • 84970002232 scopus 로고    scopus 로고
    • Show, attend and tell: Neural image caption generation with visual attention
    • Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. ICML.
    • (2015) ICML
    • Xu, K.1    Ba, J.2    Kiros, R.3    Courville, A.4    Salakhutdinov, R.5    Zemel, R.6    Bengio, Y.7
  • 53
    • 80053240499 scopus 로고    scopus 로고
    • Compositional matrix-space models for sentiment analysis
    • Ainur Yessenalina and Claire Cardie. 2011. Compositional matrix-space models for sentiment analysis. In EMNLP, pages 172-182.
    • (2011) EMNLP , pp. 172-182
    • Yessenalina, A.1    Cardie, C.2
  • 55
    • 84904573681 scopus 로고    scopus 로고
    • Do users rate or review?: Boost phrase-level sentiment labeling with review-level sentiment classification
    • ACM
    • Yongfeng Zhang, Haochen Zhang, Min Zhang, Y-iqun Liu, and Shaoping Ma. 2014. Do users rate or review?: boost phrase-level sentiment labeling with review-level sentiment classification. In SIGIR, pages 1027-1030. ACM.
    • (2014) SIGIR , pp. 1027-1030
    • Zhang, Y.1    Zhang, H.2    Zhang, M.3    Liu, Y.-I.4    Ma, S.5
  • 56
    • 84949766261 scopus 로고    scopus 로고
    • Self-adaptive hierarchical sentence model
    • Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015. Self-adaptive hierarchical sentence model. In IJCAI.
    • (2015) IJCAI
    • Zhao, H.1    Lu, Z.2    Poupart, P.3
  • 57
    • 80053239308 scopus 로고    scopus 로고
    • Unsupervised discovery of discourse relations for eliminating intra-sentence polarity ambiguities
    • Lanjun Zhou, Binyang Li, Wei Gao, Zhongyu Wei, and Kam-Fai Wong. 2011. Unsupervised discovery of discourse relations for eliminating intra-sentence polarity ambiguities. In EMNLP, pages 162-171,.
    • (2011) EMNLP , pp. 162-171
    • Zhou, L.1    Li, B.2    Gao, W.3    Wei, Z.4    Wong, K.5
  • 58
    • 84969812378 scopus 로고    scopus 로고
    • Long short-term memory over tree structures
    • Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015. Long short-term memory over tree structures. ICML.
    • (2015) ICML
    • Zhu, X.1    Sobhani, P.2    Guo, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.