-
1
-
-
80053898467
-
Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma
-
22003389, ().:.
-
Gilson M, Fukai T, (2011) Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma. PloS one6: e25339. doi: 10.1371/journal.pone.002533922003389
-
(2011)
PloS one
, vol.6
, pp. e25339
-
-
Gilson, M.1
Fukai, T.2
-
2
-
-
0037180796
-
Long-term dendritic spine stability in the adult cortex
-
12490949, ().
-
Grutzendler J, Kasthuri N, Gan W, (2002) Long-term dendritic spine stability in the adult cortex. Nature420. doi: 10.1038/nature0127612490949
-
(2002)
Nature
, vol.420
-
-
Grutzendler, J.1
Kasthuri, N.2
Gan, W.3
-
3
-
-
0037180832
-
Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex
-
12490942, . ().:–.
-
Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, et al. (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420: 788–94. doi: 10.1038/nature0127312490942
-
(2002)
Nature
, vol.420
, pp. 788-794
-
-
Trachtenberg, J.T.1
Chen, B.E.2
Knott, G.W.3
Feng, G.4
Sanes, J.R.5
-
4
-
-
0030839124
-
A network of tufted layer 5 pyramidal neurons
-
().:–.
-
Markram H, (1997) A network of tufted layer 5 pyramidal neurons. Cerebral cortex (New York, NY: 1991)7: 523–33.
-
(1997)
Cerebral cortex (New York, NY: 1991)
, vol.7
, pp. 523-533
-
-
Markram, H.1
-
6
-
-
18044383304
-
Highly nonrandom features of synaptic connectivity in local cortical circuits
-
15737062, ().:.
-
Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB, (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS biology3: e68. doi: 10.1371/journal.pbio.003006815737062
-
(2005)
PLoS biology
, vol.3
, pp. e68
-
-
Song, S.1
Sjöström, P.J.2
Reigl, M.3
Nelson, S.4
Chklovskii, D.B.5
-
7
-
-
0024473444
-
Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics
-
().:–.
-
Harris KM, Stevens JK, (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. The Journal of neuroscience: the official journal of the Society for Neuroscience9: 2982–97.
-
(1989)
The Journal of neuroscience: the official journal of the Society for Neuroscience
, vol.9
, pp. 2982-2997
-
-
Harris, K.M.1
Stevens, J.K.2
-
8
-
-
0027511788
-
Quantal analysis and synaptic anatomy–integrating two views of hippocampal plasticity
-
7682347, ().:–.
-
Lisman JE, Harris KM, (1993) Quantal analysis and synaptic anatomy–integrating two views of hippocampal plasticity. Trends in neurosciences16: 141–7. 7682347
-
(1993)
Trends in neurosciences
, vol.16
, pp. 141-147
-
-
Lisman, J.E.1
Harris, K.M.2
-
9
-
-
0027743348
-
Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically
-
8120587, ().:–.
-
Thomson AM, Deuchars J, West DC, (1993) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. Journal of neurophysiology70: 2354–69. 8120587
-
(1993)
Journal of neurophysiology
, vol.70
, pp. 2354-2369
-
-
Thomson, A.M.1
Deuchars, J.2
West, D.C.3
-
10
-
-
58149387084
-
Principles of long-term dynamics of dendritic spines
-
().:–.
-
Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H, (2008) Principles of long-term dynamics of dendritic spines. The Journal of neuroscience: the official journal of the Society for Neuroscience28: 13592–608. doi: 10.1523/JNEUROSCI.0603-08.2008
-
(2008)
The Journal of neuroscience: the official journal of the Society for Neuroscience
, vol.28
, pp. 13592-13608
-
-
Yasumatsu, N.1
Matsuzaki, M.2
Miyazaki, T.3
Noguchi, J.4
Kasai, H.5
-
12
-
-
77954576671
-
Independent component analysis in spiking neurons
-
20421937, ().:.
-
Savin C, Joshi P, Triesch J, (2010) Independent component analysis in spiking neurons. PLoS computational biology6: e1000757. doi: 10.1371/journal.pcbi.100075720421937
-
(2010)
PLoS computational biology
, vol.6
, pp. e1000757
-
-
Savin, C.1
Joshi, P.2
Triesch, J.3
-
13
-
-
84861214556
-
Synaptic scaling in combination with many generic plasticity mechanisms stabilizes circuit connectivity
-
().:–.
-
Tetzlaff C, Kolodziejski C, Timme M, Wörgötter F, (2011) Synaptic scaling in combination with many generic plasticity mechanisms stabilizes circuit connectivity. Frontiers in Computational Neuroscience5: 1–15. doi: 10.3389/fncom.2011.00047
-
(2011)
Frontiers in Computational Neuroscience
, vol.5
, pp. 1-15
-
-
Tetzlaff, C.1
Kolodziejski, C.2
Timme, M.3
Wörgötter, F.4
-
14
-
-
84879162431
-
Analysis of Synaptic Scaling in Combination with Hebbian Plasticity in Several Simple Networks
-
().:–.
-
Tetzlaff C, Kolodziejski C, Timme M, Wörgötter F, (2012) Analysis of Synaptic Scaling in Combination with Hebbian Plasticity in Several Simple Networks. Frontiers in Computational Neuroscience6: 1–17. doi: 10.3389/fncom.2012.00036
-
(2012)
Frontiers in Computational Neuroscience
, vol.6
, pp. 1-17
-
-
Tetzlaff, C.1
Kolodziejski, C.2
Timme, M.3
Wörgötter, F.4
-
17
-
-
84953297303
-
Where’s the noise? key features of neuronal variability and inference emerge from self-organized learning
-
26714277, ().:.
-
Hartmann C, Lazar A, Triesch J, (2015) Where’s the noise? key features of neuronal variability and inference emerge from self-organized learning. PLoS computational biology11: e1004640. doi: 10.1371/journal.pcbi.100464026714277
-
(2015)
PLoS computational biology
, vol.11
, pp. e1004640
-
-
Hartmann, C.1
Lazar, A.2
Triesch, J.3
-
18
-
-
84873511304
-
Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex
-
23300431, ().:.
-
Zheng P, Dimitrakakis C, Triesch J, (2013) Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex. PLoS computational biology9: e1002848. doi: 10.1371/journal.pcbi.100284823300431
-
(2013)
PLoS computational biology
, vol.9
, pp. e1002848
-
-
Zheng, P.1
Dimitrakakis, C.2
Triesch, J.3
-
19
-
-
67649960075
-
Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity
-
19554080, . ().:.
-
Minerbi A, Kahana R, Goldfeld L, Kaufman M, Marom S, et al. (2009) Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity. PLoS biology7: e1000136. doi: 10.1371/journal.pbio.100013619554080
-
(2009)
PLoS biology
, vol.7
, pp. e1000136
-
-
Minerbi, A.1
Kahana, R.2
Goldfeld, L.3
Kaufman, M.4
Marom, S.5
-
20
-
-
0036716478
-
Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro
-
().:–.
-
Thomson AM, West DC, Wang Y, Bannister aP, (2002) Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cerebral cortex (New York, NY: 1991)12: 936–53.
-
(2002)
Cerebral cortex (New York, NY: 1991)
, vol.12
, pp. 936-953
-
-
Thomson, A.M.1
West, D.C.2
Wang, Y.3
Bannister, P.4
-
21
-
-
84885847922
-
Brian: a simulator for spiking neural networks in python
-
19115011, ().:.
-
Goodman D, Brette R, (2008) Brian: a simulator for spiking neural networks in python. Frontiers in neuroinformatics2: 5. doi: 10.3389/neuro.11.005.200819115011
-
(2008)
Frontiers in neuroinformatics
, vol.2
, pp. 5
-
-
Goodman, D.1
Brette, R.2
-
23
-
-
0036201201
-
Short-term synaptic plasticity
-
11826273, ().:–.
-
Zucker RS, Regehr WG, (2002) Short-term synaptic plasticity. Annual Review of Physiology64: 355–405. doi: 10.1146/annurev.physiol.64.092501.11454711826273
-
(2002)
Annual Review of Physiology
, vol.64
, pp. 355-405
-
-
Zucker, R.S.1
Regehr, W.G.2
-
24
-
-
0032535029
-
Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
-
().:–.
-
Bi GQ, Poo MM, (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience: the official journal of the Society for Neuroscience18: 10464–72.
-
(1998)
The Journal of neuroscience: the official journal of the Society for Neuroscience
, vol.18
, pp. 10464-10472
-
-
Bi, G.Q.1
Poo, M.M.2
-
25
-
-
85016693217
-
Spike-timing-dependent synaptic plasticity depends on dendritic location
-
().:–.
-
Froemke R, Poo Mm, Dan Y, (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature2033: 2032–2033.
-
(2005)
Nature
, vol.2033
, pp. 2032-2033
-
-
Froemke, R.1
Poo, M.2
Dan, Y.3
-
26
-
-
0029821128
-
A neuronal learning rule for sub-millisecond temporal coding
-
().:–.
-
Gerstner W, Kempter R, van Hemmen J L, Wagner H, (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature383: 76–78. doi: 10.1038/383076a0
-
(1996)
Nature
, vol.383
, pp. 76-78
-
-
Gerstner, W.1
Kempter, R.2
van Hemmen, J.L.3
Wagner, H.4
-
27
-
-
0000442118
-
Hebbian learning and spiking neurons
-
().:–.
-
Kempter R, Gerstner W, van Hemmen J, (1999) Hebbian learning and spiking neurons. Physical Review E59: 4498–4514. doi: 10.1103/PhysRevE.59.4498
-
(1999)
Physical Review E
, vol.59
, pp. 4498-4514
-
-
Kempter, R.1
Gerstner, W.2
van Hemmen, J.3
-
28
-
-
0033860923
-
Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
-
10966623, ().:–.
-
Song S, Miller KD, Abbott LF, (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience3: 919–26. doi: 10.1038/7882910966623
-
(2000)
Nature neuroscience
, vol.3
, pp. 919-926
-
-
Song, S.1
Miller, K.D.2
Abbott, L.F.3
-
29
-
-
0032480332
-
A critical window for cooperation and competition among developing retinotectal synapses
-
9738497, ().:–.
-
Zhang LI, Tao HW, Holt CE, Harris WA, Poo Mm, (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature395: 37–44. doi: 10.1038/256659738497
-
(1998)
Nature
, vol.395
, pp. 37-44
-
-
Zhang, L.I.1
Tao, H.W.2
Holt, C.E.3
Harris, W.A.4
Poo, M.5
-
30
-
-
40849138306
-
Rapid synaptic scaling induced by changes in postsynaptic firing
-
18367083, ().:–.
-
Ibata K, Sun Q, Turrigiano GG, (2008) Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron57: 819–26. doi: 10.1016/j.neuron.2008.02.03118367083
-
(2008)
Neuron
, vol.57
, pp. 819-826
-
-
Ibata, K.1
Sun, Q.2
Turrigiano, G.G.3
-
31
-
-
0032567928
-
Activity-dependent scaling of quantal amplitude in neocortical neurons
-
9495341, ().:–.
-
Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB, (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature391: 892–6. doi: 10.1038/361039495341
-
(1998)
Nature
, vol.391
, pp. 892-896
-
-
Turrigiano, G.G.1
Leslie, K.R.2
Desai, N.S.3
Rutherford, L.C.4
Nelson, S.B.5
-
33
-
-
0141749203
-
A universal model for spike-frequency adaptation
-
14577853, ().:–.
-
Benda J, Herz AVM, (2003) A universal model for spike-frequency adaptation. Neural computation15: 2523–64. doi: 10.1162/08997660332238506314577853
-
(2003)
Neural computation
, vol.15
, pp. 2523-2564
-
-
Benda, J.1
Herz, A.V.M.2
-
34
-
-
0033360297
-
Plasticity in the intrinsic excitability of cortical pyramidal neurons
-
10448215, ().:–.
-
Desai NS, Rutherford LC, Turrigiano GG, (1999) Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature neuroscience2: 515–20. doi: 10.1038/916510448215
-
(1999)
Nature neuroscience
, vol.2
, pp. 515-520
-
-
Desai, N.S.1
Rutherford, L.C.2
Turrigiano, G.G.3
-
35
-
-
0242300203
-
The other side of the engram: experience-driven changes in neuronal intrinsic excitability
-
14595400, ().:–.
-
Zhang W, Linden DJ, (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature reviews Neuroscience4: 885–900. doi: 10.1038/nrn124814595400
-
(2003)
Nature reviews Neuroscience
, vol.4
, pp. 885-900
-
-
Zhang, W.1
Linden, D.J.2
-
37
-
-
84908323011
-
Synaptic Size Dynamics as an Effectively Stochastic Process
-
25275505, ().:.
-
Statman A, Kaufman M, Minerbi A, Ziv NE, Brenner N, (2014) Synaptic Size Dynamics as an Effectively Stochastic Process. PLoS computational biology10: e1003846. doi: 10.1371/journal.pcbi.100384625275505
-
(2014)
PLoS computational biology
, vol.10
, pp. e1003846
-
-
Statman, A.1
Kaufman, M.2
Minerbi, A.3
Ziv, N.E.4
Brenner, N.5
-
38
-
-
84941241695
-
Predicting the Dynamics of Network Connectivity in the Neocortex
-
26354919, ().:–.
-
Loewenstein Y, Yanover U, Rumpel S, (2015) Predicting the Dynamics of Network Connectivity in the Neocortex. Journal of Neuroscience35: 12535–12544. doi: 10.1523/JNEUROSCI.2917-14.201526354919
-
(2015)
Journal of Neuroscience
, vol.35
, pp. 12535-12544
-
-
Loewenstein, Y.1
Yanover, U.2
Rumpel, S.3
-
39
-
-
67249148362
-
Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX
-
Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008). Pasadena, CA USA, pp. 11–15.
-
-
-
Hagberg, A.A.1
Schult, D.A.2
-
40
-
-
85026967328
-
-
Levenson A, van Liere D (2011). triadic census.
-
Levenson A, van Liere D (2011). triadic census. https://networkx.lanl.gov/trac/ticket/190.
-
-
-
-
41
-
-
85026963210
-
-
Software A (2012). GraphClick.
-
Software A (2012). GraphClick. http://www.arizona-software.ch/graphclick/.
-
-
-
-
42
-
-
84935865748
-
The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model
-
26113811, ().
-
Aćimović J, Mäki-Marttunen T, Linne ML, (2015) The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model. Frontiers in Neuroanatomy9. doi: 10.3389/fnana.2015.0007626113811
-
(2015)
Frontiers in Neuroanatomy
, vol.9
-
-
Aćimović, J.1
Mäki-Marttunen, T.2
Linne, M.L.3
-
43
-
-
64849111400
-
Correlated Connectivity and the Distribution of Firing Rates in the Neocortex
-
19321765, ().:–.
-
Koulakov aa, Hromadka T, Zador aM, (2009) Correlated Connectivity and the Distribution of Firing Rates in the Neocortex. Journal of Neuroscience29: 3685–3694. doi: 10.1523/JNEUROSCI.4500-08.200919321765
-
(2009)
Journal of Neuroscience
, vol.29
, pp. 3685-3694
-
-
Koulakov1
Hromadka, T.2
Zador, M.3
-
44
-
-
67651006811
-
Epileptogenesis due to glia-mediated synaptic scaling
-
18986963, ().:–.
-
Savin C, Triesch J, Meyer-Hermann M, (2009) Epileptogenesis due to glia-mediated synaptic scaling. Journal of the Royal Society, Interface / the Royal Society6: 655–68. doi: 10.1098/rsif.2008.038718986963
-
(2009)
Journal of the Royal Society, Interface / the Royal Society
, vol.6
, pp. 655-668
-
-
Savin, C.1
Triesch, J.2
Meyer-Hermann, M.3
-
45
-
-
84938630123
-
A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks
-
26158556, ().:.
-
Sweeney Y, Hellgren Kotaleski J, Hennig MH, (2015) A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks. PLOS Computational Biology11: e1004389. doi: 10.1371/journal.pcbi.100438926158556
-
(2015)
PLOS Computational Biology
, vol.11
, pp. e1004389
-
-
Sweeney, Y.1
Hellgren Kotaleski, J.2
Hennig, M.H.3
-
46
-
-
84908666578
-
Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures
-
().:–.
-
Miner DC, Triesch J, (2014) Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures. Frontiers in Neuroanatomy8: 1–9. doi: 10.3389/fnana.2014.00125
-
(2014)
Frontiers in Neuroanatomy
, vol.8
, pp. 1-9
-
-
Miner, D.C.1
Triesch, J.2
-
47
-
-
77957017889
-
Semi-automated reconstruction of neural circuits using electron microscopy
-
20833533, ().:–.
-
Chklovskii DB, Vitaladevuni S, Scheffer LK, (2010) Semi-automated reconstruction of neural circuits using electron microscopy. Current Opinion in Neurobiology20: 667–675. doi: 10.1016/j.conb.2010.08.00220833533
-
(2010)
Current Opinion in Neurobiology
, vol.20
, pp. 667-675
-
-
Chklovskii, D.B.1
Vitaladevuni, S.2
Scheffer, L.K.3
-
49
-
-
84864010311
-
Excitatory, Inhibitory, and Structural Plasticity Produce Correlated Connectivity in Random Networks Trained to Solve Paired-Stimulus Tasks
-
().:–.
-
Bourjaily MA, Miller P, (2011) Excitatory, Inhibitory, and Structural Plasticity Produce Correlated Connectivity in Random Networks Trained to Solve Paired-Stimulus Tasks. Frontiers in Computational Neuroscience5: 1–24. doi: 10.3389/fncom.2011.00037
-
(2011)
Frontiers in Computational Neuroscience
, vol.5
, pp. 1-24
-
-
Bourjaily, M.A.1
Miller, P.2
-
51
-
-
77649152514
-
Connectivity reflects coding: a model of voltage-based STDP with homeostasis
-
20098420, ().:–.
-
Clopath C, Büsing L, Vasilaki E, Gerstner W, (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience13: 344–52. doi: 10.1038/nn.247920098420
-
(2010)
Nature neuroscience
, vol.13
, pp. 344-352
-
-
Clopath, C.1
Büsing, L.2
Vasilaki, E.3
Gerstner, W.4
-
52
-
-
0029835892
-
Chaos in neuronal networks with balanced excitatory and inhibitory activity
-
().:–.
-
van Vreeswijk C, Sompolinsky H, (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science (New York, NY)274: 1724–6. doi: 10.1126/science.274.5293.1724
-
(1996)
Science (New York, NY)
, vol.274
, pp. 1724-1726
-
-
van Vreeswijk, C.1
Sompolinsky, H.2
-
53
-
-
68649088777
-
Reservoir computing approaches to recurrent neural network training
-
().:–.
-
Lukoševičius M, Jaeger H, (2009) Reservoir computing approaches to recurrent neural network training. Computer Science Review3: 127–149. doi: 10.1016/j.cosrev.2009.03.005
-
(2009)
Computer Science Review
, vol.3
, pp. 127-149
-
-
Lukoševičius, M.1
Jaeger, H.2
-
54
-
-
84938877260
-
The Use of Hebbian Cell Assemblies for Nonlinear Computation
-
26249242, ().:.
-
Tetzlaff C, Dasgupta S, Kulvicius T, Wörgötter F, (2015) The Use of Hebbian Cell Assemblies for Nonlinear Computation. Scientific Reports5: 12866. doi: 10.1038/srep1286626249242
-
(2015)
Scientific Reports
, vol.5
, pp. 12866
-
-
Tetzlaff, C.1
Dasgupta, S.2
Kulvicius, T.3
Wörgötter, F.4
|