-
2
-
-
84855312264
-
Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions
-
Aravind S.S.Jyothirmayee, Ramaprabhu S. Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions. J. Appl. Phys. 2011, 110(12):124326.
-
(2011)
J. Appl. Phys.
, vol.110
, Issue.12
, pp. 124326
-
-
Aravind, S.S.J.1
Ramaprabhu, S.2
-
3
-
-
84899819382
-
Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system
-
Bandarra Filho Enio Pedone, et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers. Manage. 2014, 84:261-267.
-
(2014)
Energy Convers. Manage.
, vol.84
, pp. 261-267
-
-
Bandarra Filho, E.P.1
-
4
-
-
84888102692
-
Thermal performance of two phase thermosyphon flat-plate solar collectors using nanofluid
-
Chougule Sandesh S., Sahu S.K., Pise Ashok T. Thermal performance of two phase thermosyphon flat-plate solar collectors using nanofluid. J. Sol. Energy Eng. 2014, 136(1):014503.
-
(2014)
J. Sol. Energy Eng.
, vol.136
, Issue.1
, pp. 014503
-
-
Chougule, S.S.1
Sahu, S.K.2
Pise, A.T.3
-
5
-
-
84862317339
-
Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications
-
Colangelo Gianpiero, et al. Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl. Energy 2012, 97:828-833.
-
(2012)
Appl. Energy
, vol.97
, pp. 828-833
-
-
Colangelo, G.1
-
6
-
-
84878517898
-
A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids
-
Colangelo Gianpiero, et al. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl. Energy 2013, 111:80-93.
-
(2013)
Appl. Energy
, vol.111
, pp. 80-93
-
-
Colangelo, G.1
-
7
-
-
84930939822
-
Experimental test of an innovative high concentration nanofluid solar collector
-
Colangelo Gianpiero, et al. Experimental test of an innovative high concentration nanofluid solar collector. Appl. Energy 2015, 154:874-881.
-
(2015)
Appl. Energy
, vol.154
, pp. 874-881
-
-
Colangelo, G.1
-
8
-
-
84959367918
-
3-diathermic oil nanofluids for solar energy systems
-
3-diathermic oil nanofluids for solar energy systems. Energy 2016, 95:124-136.
-
(2016)
Energy
, vol.95
, pp. 124-136
-
-
Colangelo, G.1
-
9
-
-
84953791962
-
Innovation in flat solar thermal collectors: a review of the last ten years experimental results
-
Colangelo Gianpiero, et al. Innovation in flat solar thermal collectors: a review of the last ten years experimental results. Renew. Sust. Energy Rev. 2016, 57:1141-1159.
-
(2016)
Renew. Sust. Energy Rev.
, vol.57
, pp. 1141-1159
-
-
Colangelo, G.1
-
10
-
-
84946763174
-
Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid
-
Delfani S., Karami M., Akhavan-Behabadi M.A. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew. Energy 2016, 87:754-764.
-
(2016)
Renew. Energy
, vol.87
, pp. 754-764
-
-
Delfani, S.1
Karami, M.2
Akhavan-Behabadi, M.A.3
-
12
-
-
84928880103
-
Graphene single crystals: size and morphology engineering
-
Geng D., Wang H., Yu G. Graphene single crystals: size and morphology engineering. Adv. Mater. 2015, 27:2821-2837.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2821-2837
-
-
Geng, D.1
Wang, H.2
Yu, G.3
-
13
-
-
84942508418
-
Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology
-
Gorji Tahereh B., Ranjbar A.A. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Sol. Energy 2015, 122:314-325.
-
(2015)
Sol. Energy
, vol.122
, pp. 314-325
-
-
Gorji, T.B.1
Ranjbar, A.A.2
-
14
-
-
84877743197
-
Thermal conductivity of nanofluids containing high aspect ratio fillers
-
Gu Bangming, et al. Thermal conductivity of nanofluids containing high aspect ratio fillers. Int. J. Heat Mass Transf. 2013, 64:108-114.
-
(2013)
Int. J. Heat Mass Transf.
, vol.64
, pp. 108-114
-
-
Gu, B.1
-
15
-
-
80655141580
-
Thermal conductivity enhancement of nanofluids containing graphene nanosheets
-
Gupta Soujit Sen, et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J. Appl. Phys. 2011, 110(8):084302.
-
(2011)
J. Appl. Phys.
, vol.110
, Issue.8
, pp. 084302
-
-
Gupta, S.S.1
-
17
-
-
84946476578
-
Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids
-
He Qinbo, Zeng Shequan, Wang Shuangfeng Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Appl. Therm. Eng. 2015, 88:165-171.
-
(2015)
Appl. Therm. Eng.
, vol.88
, pp. 165-171
-
-
He, Q.1
Zeng, S.2
Wang, S.3
-
18
-
-
33847748193
-
Meeting the clean energy demand: nanostructure architectures for solar energy conversion
-
Kamat P.V. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. 2007, 111:2834-2860.
-
(2007)
J. Phys. Chem.
, vol.111
, pp. 2834-2860
-
-
Kamat, P.V.1
-
19
-
-
84888618344
-
A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector
-
Karami M., et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol. Energy Mater. Sol. Cells 2014, 121:114-118.
-
(2014)
Sol. Energy Mater. Sol. Cells
, vol.121
, pp. 114-118
-
-
Karami, M.1
-
20
-
-
84939784034
-
Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications
-
Karami M., et al. Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renew. Sust. Energy Rev. 2015, 52:793-801.
-
(2015)
Renew. Sust. Energy Rev.
, vol.52
, pp. 793-801
-
-
Karami, M.1
-
21
-
-
84941687462
-
Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation
-
Karami M., et al. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol. Energy Mater. Sol. Cells 2016, 144:136-142.
-
(2016)
Sol. Energy Mater. Sol. Cells
, vol.144
, pp. 136-142
-
-
Karami, M.1
-
22
-
-
68849105094
-
Application of nanofluids in heating buildings and reducing pollution
-
Kulkarni Devdatta P., Das Debendra K., Vajjha Ravikanth S. Application of nanofluids in heating buildings and reducing pollution. Appl. Energy 2009, 86(12):2566-2573.
-
(2009)
Appl. Energy
, vol.86
, Issue.12
, pp. 2566-2573
-
-
Kulkarni, D.P.1
Das, D.K.2
Vajjha, R.S.3
-
23
-
-
82955167416
-
Optimization of nanofluid volumetric receivers for solar thermal energy conversion
-
Lenert Andrej, Wang Evelyn N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 2012, 86(1):253-265.
-
(2012)
Sol. Energy
, vol.86
, Issue.1
, pp. 253-265
-
-
Lenert, A.1
Wang, E.N.2
-
24
-
-
84858297142
-
Nanofluid-based absorbers for high temperature direct solar collectors
-
American Society of Mechanical Engineers
-
Lenert Andrej, Zuniga Yoshio S.Perez, Wang Evelyn N. Nanofluid-based absorbers for high temperature direct solar collectors. 14th International Heat Transfer Conference 2010, American Society of Mechanical Engineers.
-
(2010)
14th International Heat Transfer Conference
-
-
Lenert, A.1
Zuniga, Y.S.P.2
Wang, E.N.3
-
25
-
-
84919632550
-
Review of heat transfer in nanofluids: conductive, convective and radiative experimental results
-
Lomascolo Mauro, et al. Review of heat transfer in nanofluids: conductive, convective and radiative experimental results. Renew. Sust. Energy Rev. 2015, 43:1182-1198.
-
(2015)
Renew. Sust. Energy Rev.
, vol.43
, pp. 1182-1198
-
-
Lomascolo, M.1
-
26
-
-
33750313971
-
A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation
-
Lu J.P., Chow T., He W., Pei G. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Appl. Energy 2007, 222-237.
-
(2007)
Appl. Energy
, pp. 222-237
-
-
Lu, J.P.1
Chow, T.2
He, W.3
Pei, G.4
-
27
-
-
84905638076
-
Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids
-
Mehrali Mohammad, et al. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J. Mater. Sci. 2014, 49(20):7156-7171.
-
(2014)
J. Mater. Sci.
, vol.49
, Issue.20
, pp. 7156-7171
-
-
Mehrali, M.1
-
28
-
-
84892540487
-
Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
-
Mehrali Mohammad, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 2014, 9(1):1-12.
-
(2014)
Nanoscale Res. Lett.
, vol.9
, Issue.1
, pp. 1-12
-
-
Mehrali, M.1
-
29
-
-
84937869913
-
Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide-water nanofluid
-
Michael Jee Joe, Iniyan S. Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide-water nanofluid. Sol. Energy 2015, 119:439-451.
-
(2015)
Sol. Energy
, vol.119
, pp. 439-451
-
-
Michael, J.J.1
Iniyan, S.2
-
30
-
-
84902441347
-
High efficiency nanofluid cooling system for wind turbines
-
Milanese Marco, Colangelo Gianpiero, Laforgia Domenico High efficiency nanofluid cooling system for wind turbines. Therm. Sci. 2014, 18(2):543-554.
-
(2014)
Therm. Sci.
, vol.18
, Issue.2
, pp. 543-554
-
-
Milanese, M.1
Colangelo, G.2
Laforgia, D.3
-
31
-
-
84958928550
-
Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems-Part I: water-based nanofluids behavior
-
Milanese M., et al. Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems-Part I: water-based nanofluids behavior. Sol. Energy Mater. Sol. Cells 2016, 147:315-320.
-
(2016)
Sol. Energy Mater. Sol. Cells
, vol.147
, pp. 315-320
-
-
Milanese, M.1
-
34
-
-
56649120696
-
New temperature dependent thermal conductivity data for water-based nanofluids
-
Mintsa Honorine Angue, et al. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 2009, 48(2):363-371.
-
(2009)
Int. J. Therm. Sci.
, vol.48
, Issue.2
, pp. 363-371
-
-
Mintsa, H.A.1
-
36
-
-
34447620671
-
Experimental model of temperature-driven nanofluid
-
Nnanna A.G. Experimental model of temperature-driven nanofluid. J. Heat Transf. 2007, 129(6):697-704.
-
(2007)
J. Heat Transf.
, vol.129
, Issue.6
, pp. 697-704
-
-
Nnanna, A.G.1
-
37
-
-
27744534165
-
Two-dimensional gas of massless Dirac fermions in graphene
-
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438:197-200.
-
(2005)
Nature
, vol.438
, pp. 197-200
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Katsnelson, M.I.5
Grigorieva, I.V.6
Dubonos, S.V.7
Firsov, A.A.8
-
38
-
-
84858195895
-
Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry
-
O'Hanley H., Buongiorno J., McKrell T., Hu L.-W. Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv. Mech. Eng. 2012, 4:181079.
-
(2012)
Adv. Mech. Eng.
, vol.4
, pp. 181079
-
-
O'Hanley, H.1
Buongiorno, J.2
McKrell, T.3
Hu, L.-W.4
-
39
-
-
84959401335
-
-
World Energy Outlook 2014. Organization for Economic Cooperation & Devel.
-
Organization for Economic Co-Operation and Development, 2014. World Energy Outlook 2014. Organization for Economic Cooperation & Devel.
-
(2014)
-
-
-
40
-
-
68049117335
-
Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies
-
Otanicar Todd P., Golden Jay S. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol. 2009, 43(15):6082-6087.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.15
, pp. 6082-6087
-
-
Otanicar, T.P.1
Golden, J.S.2
-
41
-
-
65649083108
-
Optical properties of liquids for direct absorption solar thermal energy systems
-
Otanicar Todd P., Phelan Patrick E., Golden Jay S. Optical properties of liquids for direct absorption solar thermal energy systems. Sol. Energy 2009, 83(7):969-977.
-
(2009)
Sol. Energy
, vol.83
, Issue.7
, pp. 969-977
-
-
Otanicar, T.P.1
Phelan, P.E.2
Golden, J.S.3
-
42
-
-
79952592696
-
Nanofluid-based direct absorption solar collector
-
Otanicar Todd P., et al. Nanofluid-based direct absorption solar collector. J. Renew. Sust. Energy 2010, 2(3):033102.
-
(2010)
J. Renew. Sust. Energy
, vol.2
, Issue.3
, pp. 033102
-
-
Otanicar, T.P.1
-
43
-
-
84885904065
-
3-nanofluid and its effect on a flat plate solar collector
-
3-nanofluid and its effect on a flat plate solar collector. Int. Commun. Heat Mass Transf. 2013, 48:99-107.
-
(2013)
Int. Commun. Heat Mass Transf.
, vol.48
, pp. 99-107
-
-
Said, Z.1
-
45
-
-
84924516811
-
Performance enhancement of a Flat Plate Solar collector using Titanium dioxide nanofluid and Polyethylene Glycol dispersant
-
Said Z., et al. Performance enhancement of a Flat Plate Solar collector using Titanium dioxide nanofluid and Polyethylene Glycol dispersant. J. Clean. Prod. 2015, 92:343-353.
-
(2015)
J. Clean. Prod.
, vol.92
, pp. 343-353
-
-
Said, Z.1
-
46
-
-
84926391069
-
Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors
-
Shende Rashmi, Sundara Ramaprabhu Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Sol. Energy Mater. Sol. Cells 2015, 140:9-16.
-
(2015)
Sol. Energy Mater. Sol. Cells
, vol.140
, pp. 9-16
-
-
Shende, R.1
Sundara, R.2
-
47
-
-
79958156531
-
Graphene based materials: past, present and future
-
Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. Graphene based materials: past, present and future. Progr. Mater. Sci. 2011, 56:1178-1271.
-
(2011)
Progr. Mater. Sci.
, vol.56
, pp. 1178-1271
-
-
Singh, V.1
Joung, D.2
Zhai, L.3
Das, S.4
Khondaker, S.I.5
Seal, S.6
-
49
-
-
82655187063
-
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
-
Taylor Robert A., et al. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 2011, 6(1):1-11.
-
(2011)
Nanoscale Res. Lett.
, vol.6
, Issue.1
, pp. 1-11
-
-
Taylor, R.A.1
-
50
-
-
0005535010
-
Thermal solar systems and components - solar collectors - Part 2: test methods
-
English version of DIN EN 12975-2: 2006-06.
-
Thermal solar systems and components - solar collectors - Part 2: test methods. English version of DIN EN 12975-2: 2006-06.
-
-
-
-
51
-
-
0034069053
-
Heat transfer enhancement of nanofluids
-
Xuan Yimin, Li Qiang Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21(1):58-64.
-
(2000)
Int. J. Heat Fluid Flow
, vol.21
, Issue.1
, pp. 58-64
-
-
Xuan, Y.1
Li, Q.2
-
52
-
-
84855793616
-
2O nanofluid on the efficiency of a flat-plate solar collector
-
2O nanofluid on the efficiency of a flat-plate solar collector. Sol. Energy 2012, 86(2):771-779.
-
(2012)
Sol. Energy
, vol.86
, Issue.2
, pp. 771-779
-
-
Yousefi, T.1
-
53
-
-
80053250846
-
2O nanofluid on the efficiency of flat-plate solar collectors
-
2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 2012, 39(1):293-298.
-
(2012)
Renew. Energy
, vol.39
, Issue.1
, pp. 293-298
-
-
Yousefi, T.1
-
54
-
-
79951809792
-
Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets
-
Yu Wei, et al. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A 2011, 375(10):1323-1328.
-
(2011)
Phys. Lett. A
, vol.375
, Issue.10
, pp. 1323-1328
-
-
Yu, W.1
|