-
1
-
-
0029427666
-
Enhancing thermal conductivity of fluids with nanoparticles
-
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 1995;231:99-105.
-
(1995)
ASME Fluids Eng Div
, vol.231
, pp. 99-105
-
-
Choi, S.U.S.1
-
3
-
-
84864501423
-
Application of nanofluids in heat exchangers: A review
-
Huminic G, Huminic A. Application of nanofluids in heat exchangers: a review. Renewable Sustainable Energy Rev 2012;16(8):5625-38.
-
(2012)
Renewable Sustainable Energy Rev
, vol.16
, Issue.8
, pp. 5625-5638
-
-
Huminic, G.1
Huminic, A.2
-
4
-
-
78149408746
-
Techniques for measuring the thermal conductivity of nanofluids: A review
-
Paul G, Chopkar M, Manna I, Das PK. Techniques for measuring the thermal conductivity of nanofluids: a review. Renewable Sustainable Energy Rev 2010;14(7):1913-24.
-
(2010)
Renewable Sustainable Energy Rev
, vol.14
, Issue.7
, pp. 1913-1924
-
-
Paul, G.1
Chopkar, M.2
Manna, I.3
Das, P.K.4
-
5
-
-
79955901720
-
A critical review on convective heat transfer correlations of nanofluids
-
Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renewable Sustainable Energy Rev 2011;15(6):3271-7.
-
(2011)
Renewable Sustainable Energy Rev
, vol.15
, Issue.6
, pp. 3271-3277
-
-
Sarkar, J.1
-
7
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 1999;121:280-9.
-
(1999)
J Heat Transfer
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
8
-
-
0033339009
-
Thermal conductivity of nanoparticle-fluid mixture
-
Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 1999;13(4):474-80.
-
(1999)
J Thermophys Heat Transfer
, vol.13
, Issue.4
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
Choi, S.U.S.3
-
9
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 2002;91 (7):4568-72.
-
(2002)
J Appl Phys
, vol.91
, Issue.7
, pp. 4568-4572
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
Ai, F.5
Wu, Q.6
-
10
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transfer 2003;125 (4):567-74.
-
(2003)
ASME J Heat Transfer
, vol.125
, Issue.4
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
11
-
-
21644462434
-
Experimental investigation into the pool bolining heat transfer of aqueous based γ-allumina nanofluids
-
Wen D, Ding Y. Experimental investigation into the pool bolining heat transfer of aqueous based γ-allumina nanofluids. J Nanopart Res 2005;7:265-74.
-
(2005)
J Nanopart Res
, vol.7
, pp. 265-274
-
-
Wen, D.1
Ding, Y.2
-
12
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 2006;99(8):1-8.
-
(2006)
J Appl Phys
, vol.99
, Issue.8
, pp. 1-8
-
-
Li, C.H.1
Peterson, G.P.2
-
13
-
-
84872495590
-
Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids
-
Barbes V, Paramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim 2013;111:1615-25.
-
(2013)
J Therm Anal Calorim
, vol.111
, pp. 1615-1625
-
-
Barbes, V.1
Paramo, R.2
Blanco, E.3
Pastoriza-Gallego, M.J.4
Pineiro, M.M.5
Legido, J.L.6
Casanova, C.7
-
14
-
-
33645667882
-
A new parameter to control heat transport in nano fluids: Surface charge state of the particle in suspension
-
Lee D, Kim JW, Kim BG. A new parameter to control heat transport in nano fluids: surface charge state of the particle in suspension. J Phys Chem B 2006;110(9):4323-8.
-
(2006)
J Phys Chem B
, vol.110
, Issue.9
, pp. 4323-4328
-
-
Lee, D.1
Kim, J.W.2
Kim, B.G.3
-
15
-
-
33646150179
-
Thermal conductivity and lubrification characteristics of nanofluids
-
Hwang Y, Park HS, Lee JK, Jung WH. Thermal conductivity and lubrification characteristics of nanofluids. Curr Appl Phys 2006(6S1):e67-71.
-
(2006)
Curr Appl Phys
, Issue.6
, pp. e67-e71
-
-
Hwang, Y.1
Park, H.S.2
Lee, J.K.3
Jung, W.H.4
-
16
-
-
84861579239
-
Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nano fluids
-
Khedkar RS, Sonawane SS, Wasewar KL. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nano fluids. Int Commun Heat Mass Transfer 2012;39:665-9.
-
(2012)
Int Commun Heat Mass Transfer
, vol.39
, pp. 665-669
-
-
Khedkar, R.S.1
Sonawane, S.S.2
Wasewar, K.L.3
-
18
-
-
80955143024
-
Dispersion stability and thermal conductivity of propylene glycol-based nanofluids
-
Palabiyik I, Musina Z, Witharana S, Ding Y. Dispersion stability and thermal conductivity of propylene glycol-based nanofluids. J Nanopart Res 2011;13:5049-55.
-
(2011)
J Nanopart Res
, vol.13
, pp. 5049-5055
-
-
Palabiyik, I.1
Musina, Z.2
Witharana, S.3
Ding, Y.4
-
19
-
-
84858708093
-
Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nano fluids
-
Kole M, Dey TK. Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nano fluids. Thermochim Acta 2012;535:58-65.
-
(2012)
Thermochim Acta
, vol.535
, pp. 58-65
-
-
Kole, M.1
Dey, T.K.2
-
20
-
-
84874282237
-
Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids
-
Ismaya MJL, Doroodchib E, Moghtaderia B. Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids. Chem Eng Res Des 2013;91:426-36.
-
(2013)
Chem Eng Res des
, vol.91
, pp. 426-436
-
-
Ismaya, M.J.L.1
Doroodchib, E.2
Moghtaderia, B.3
-
21
-
-
0242359493
-
Thermal conductivity of suspensions containing nanosized SiC particles
-
Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 2002;23(2):571-80.
-
(2002)
Int J Thermophys
, vol.23
, Issue.2
, pp. 571-580
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
-
22
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;78(6):718-20.
-
(2001)
Appl Phys Lett
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
23
-
-
20444450512
-
Study of the enhanced thermal conductivity of Fe nanofluids
-
Hong TK, Yang HS, Choi CJ. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 2005;97:064311.
-
(2005)
J Appl Phys
, vol.97
, pp. 064311
-
-
Hong, T.K.1
Yang, H.S.2
Choi, C.J.3
-
24
-
-
84875790077
-
Effetct of particle size on effective thermal conductivity of nano fluids
-
Baheta AT, Woldeyohannes AD. Effetct of particle size on effective thermal conductivity of nano fluids. Asian J Sci Res 2013;6(2):339-45.
-
(2013)
Asian J Sci Res
, vol.6
, Issue.2
, pp. 339-345
-
-
Baheta, A.T.1
Woldeyohannes, A.D.2
-
25
-
-
67650732997
-
The effect of particle size on the thermal conductivity of alumina nanofluids
-
Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 2009;11(5):1129-36.
-
(2009)
J Nanopart Res
, vol.11
, Issue.5
, pp. 1129-1136
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
26
-
-
56649120696
-
New temperature dependent thermal conductivity data for water-based nanofluids
-
Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 2009;48(2):363-71.
-
(2009)
Int J Therm Sci
, vol.48
, Issue.2
, pp. 363-371
-
-
Mintsa, H.A.1
Roy, G.2
Nguyen, C.T.3
Doucet, D.4
-
27
-
-
84867102875
-
Dependence of particle size on the effective thermal diffusivity and conductivity of nanofluids: Role of base fluid properties
-
Nisha MR, Philip J. Dependence of particle size on the effective thermal diffusivity and conductivity of nanofluids: role of base fluid properties. Heat Mass Transfer 2012;48:1783-90.
-
(2012)
Heat Mass Transfer
, vol.48
, pp. 1783-1790
-
-
Nisha, M.R.1
Philip, J.2
-
28
-
-
33745662197
-
Synthesis and characterization of nanofluid for advanced heat transfer applications
-
Chopkar M, Das PK, Manna I. Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 2006;55(6):549-52.
-
(2006)
Scr Mater
, vol.55
, Issue.6
, pp. 549-552
-
-
Chopkar, M.1
Das, P.K.2
Manna, I.3
-
29
-
-
44449145477
-
Effect of particle size on thermal conductivity of nanofluid
-
Chopkar M, Sudarshan S, Das PK, Manna I. Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans A 2008;39(7):1535-42.
-
(2008)
Metall Mater Trans A
, vol.39
, Issue.7
, pp. 1535-1542
-
-
Chopkar, M.1
Sudarshan, S.2
Das, P.K.3
Manna, I.4
-
30
-
-
84862317339
-
Results of experimental investigations on the heat conductivity of nano fluids based on diathermic oil for high temperature applications
-
Colangelo G, Favale E, de Risi A, Laforgia D. Results of experimental investigations on the heat conductivity of nano fluids based on diathermic oil for high temperature applications. Appl Energy 2012;97:828-33.
-
(2012)
Appl Energy
, vol.97
, pp. 828-833
-
-
Colangelo, G.1
Favale, E.2
De Risi, A.3
Laforgia, D.4
-
31
-
-
34250214988
-
The effective thermalconductivity of nanofluids based on the nanolayer and theaggregation of nanoparticles
-
Feng Y, Yu B, Xu P, Zou M. The effective thermalconductivity of nanofluids based on the nanolayer and theaggregation of nanoparticles. J Phys D: Appl Phys 2007;40(10):3164-71.
-
(2007)
J Phys D: Appl Phys
, vol.40
, Issue.10
, pp. 3164-3171
-
-
Feng, Y.1
Yu, B.2
Xu, P.3
Zou, M.4
-
32
-
-
67650723427
-
Particle shape effects on thermophysical properties of alumina nanofluids
-
Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 2009;106(1):014304.
-
(2009)
J Appl Phys
, vol.106
, Issue.1
, pp. 014304
-
-
Timofeeva, E.V.1
Routbort, J.L.2
Singh, D.3
-
34
-
-
0037394035
-
Aggregation structure and thermal conductivity of nanofluids
-
Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J 2003;49(4):1038-43.
-
(2003)
AIChE J
, vol.49
, Issue.4
, pp. 1038-1043
-
-
Xuan, Y.1
Li, Q.2
Hu, W.3
-
35
-
-
34249895253
-
Thermophysical properties of interfacial layer in nanofluids
-
Lee D. Thermophysical properties of interfacial layer in nanofluids. Langmuir 2007;23(11):6011-8.
-
(2007)
Langmuir
, vol.23
, Issue.11
, pp. 6011-6018
-
-
Lee, D.1
-
36
-
-
0036806143
-
Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid
-
Xie H, Wang J, Xi T, Liu Y, Ai F. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J Mater Sci Lett 2002;21 (19):1469-71.
-
(2002)
J Mater Sci Lett
, vol.21
, Issue.19
, pp. 1469-1471
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
Ai, F.5
-
38
-
-
84865023901
-
Measurement of the thermal conductivity of titania and alumina nanofluids
-
Yiamsawasda T, Dalkilicb AS, Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta 2012;545:48-56.
-
(2012)
Thermochim Acta
, vol.545
, pp. 48-56
-
-
Yiamsawasda, T.1
Dalkilicb, A.S.2
Wongwises, S.3
-
40
-
-
33750694638
-
Heat transfer characteristics of nanofluids: A review
-
Xiang-Qi Wang, Mujumdar Arun S. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 2007;46(1):1-19.
-
(2007)
Int J Therm Sci
, vol.46
, Issue.1
, pp. 1-19
-
-
Wang, X.-Q.1
Mujumdar Arun, S.2
-
41
-
-
32244446247
-
Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
-
Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transfer 2006;49(1-2):240-50.
-
(2006)
Int J Heat Mass Transfer
, vol.49
, Issue.1-2
, pp. 240-250
-
-
Ding, Y.1
Alias, H.2
Wen, D.3
Williams, R.A.4
-
42
-
-
33748307724
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys 2006;100(4):1-5.
-
(2006)
J Appl Phys
, vol.100
, Issue.4
, pp. 1-5
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
43
-
-
33748792032
-
Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids
-
Zhang X, Gu H, Fujii M. Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 2006;27(2):569-80.
-
(2006)
Int J Thermophys
, vol.27
, Issue.2
, pp. 569-580
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
44
-
-
84919676696
-
Temperature dependent thermal conductivity of alumina based nano fluids
-
Davis GV, Leonardi E, editors
-
Roy G, Nguyen CT, Doucet D, Suiro S, Maré T. Temperature dependent thermal conductivity of alumina based nano fluids. In: Davis GV, Leonardi E, editors. Proceedings of 13th international heat transfer conference, Begell House Inc, Redding, CT; 2006.
-
Proceedings of 13th International Heat Transfer Conference, Begell House Inc, Redding, CT; 2006
-
-
Roy, G.1
Nguyen, C.T.2
Doucet, D.3
Suiro, S.4
Maré, T.5
-
45
-
-
39449114611
-
Investigations of thermal conductivity and viscosity of nanofluids
-
Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 2008;47(5):560-8.
-
(2008)
Int J Therm Sci
, vol.47
, Issue.5
, pp. 560-568
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
46
-
-
80955143024
-
Dispersion stability and thermal conductivity of propylene glycol-based nanofluids
-
Palabiyik I, Musina Z, Witharana S, Ding Y. Dispersion stability and thermal conductivity of propylene glycol-based nanofluids. J Nanopart Res 2011;13:5049-55.
-
(2011)
J Nanopart Res
, vol.13
, pp. 5049-5055
-
-
Palabiyik, I.1
Musina, Z.2
Witharana, S.3
Ding, Y.4
-
47
-
-
31144453694
-
Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
-
Hong KS, Hong T-K, Yang H-S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 2006;88(3):1-3.
-
(2006)
Appl Phys Lett
, vol.88
, Issue.3
, pp. 1-3
-
-
Hong, K.S.1
Hong, T.-K.2
Yang, H.-S.3
-
48
-
-
24944560128
-
Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants
-
Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 2005;26(3):647-64.
-
(2005)
Int J Thermophys
, vol.26
, Issue.3
, pp. 647-664
-
-
Assael, M.J.1
Metaxa, I.N.2
Arvanitidis, J.3
Christofilos, D.4
Lioutas, C.5
-
49
-
-
84899540542
-
Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS
-
Lotfizadeh Dehkordi B, Kazi SN, Hamdi M, Ghadimi A, Sadeghinezhad E, Metselaar HSC. Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transfer 2013;49(8):1109-15.
-
(2013)
Heat Mass Transfer
, vol.49
, Issue.8
, pp. 1109-1115
-
-
Lotfizadeh Dehkordi, B.1
Kazi, S.N.2
Hamdi, M.3
Ghadimi, A.4
Sadeghinezhad, E.5
Metselaar, H.S.C.6
-
50
-
-
63749091682
-
Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids
-
Wang X, Zhu D. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 2009;470(1-3):107-11.
-
(2009)
Chem Phys Lett
, vol.470
, Issue.1-3
, pp. 107-111
-
-
Wang, X.1
Zhu, D.2
-
51
-
-
58149311261
-
Characterization of electrokinetic properties of nanofluids
-
Murshed SMS, Leong KC, Yang C. Characterization of electrokinetic properties of nanofluids. J Nanosci Nanotechnol 2008;8(11):5966-71.
-
(2008)
J Nanosci Nanotechnol
, vol.8
, Issue.11
, pp. 5966-5971
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
52
-
-
84874282237
-
Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids
-
Ismaya MJL, Doroodchib E, Moghtaderia B. Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids. Chem Eng Res Des 2013;9(1):426-36.
-
(2013)
Chem Eng Res des
, vol.9
, Issue.1
, pp. 426-436
-
-
Ismaya, M.J.L.1
Doroodchib, E.2
Moghtaderia, B.3
-
54
-
-
30944440044
-
Enhancement of thermal conductivity with CuO for nanofluids
-
Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol 2006;29(1):72-7.
-
(2006)
Chem Eng Technol
, vol.29
, Issue.1
, pp. 72-77
-
-
Liu, M.S.1
Lin, M.C.C.2
Huang, I.T.3
Wang, C.C.4
-
55
-
-
0035473529
-
Anomalous thermal conductivity enhancement in nanotube suspensions
-
Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001;79:2252.
-
(2001)
Appl Phys Lett
, vol.79
, pp. 2252
-
-
Choi, S.U.S.1
Zhang, Z.G.2
Yu, W.3
Lockwood, F.E.4
Grulke, E.A.5
-
56
-
-
32544455326
-
Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes
-
Marquis FDS, Chibante LPF. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM 2005;57(12):32-43.
-
(2005)
JOM
, vol.57
, Issue.12
, pp. 32-43
-
-
Marquis, F.D.S.1
Chibante, L.P.F.2
-
57
-
-
33745244786
-
Thermal and rheological properties of carbon nanotube-in-oil dispersions
-
114307
-
Yang Y, Grulke EA, Zhang ZG, Wu G. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys 2006;99(11):114307 (114307).
-
(2006)
J Appl Phys
, vol.99
, Issue.11
, pp. 114307
-
-
Yang, Y.1
Grulke, E.A.2
Zhang, Z.G.3
Wu, G.4
-
58
-
-
26044467637
-
Enhancement of thermal conductivity with carbon nanotube for nanofluids
-
Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transfer 2005;32(9):1202-10.
-
(2005)
Int Commun Heat Mass Transfer
, vol.32
, Issue.9
, pp. 1202-1210
-
-
Liu, M.S.1
Lin, M.C.C.2
Huang, I.T.3
Wang, C.C.4
-
59
-
-
84878517898
-
A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids
-
Colangelo G, Favale E, de Risi A, Laforgia D. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy 2013;111:80-93.
-
(2013)
Appl Energy
, vol.111
, pp. 80-93
-
-
Colangelo, G.1
Favale, E.2
De Risi, A.3
Laforgia, D.4
-
60
-
-
8344262372
-
Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions
-
Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transfer 2004;47(24):5181-8.
-
(2004)
Int J Heat Mass Transfer
, vol.47
, Issue.24
, pp. 5181-5188
-
-
Wen, D.1
Ding, Y.2
-
61
-
-
33645854344
-
Experimental investigation of oxide nanofluids laminar flow convection heat transfer
-
Heris SZ, Etemad G, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convection heat transfer. Int Commun Heat Mass Transfer 2006;33:529-35.
-
(2006)
Int Commun Heat Mass Transfer
, vol.33
, pp. 529-535
-
-
Heris, S.Z.1
Etemad, G.2
Esfahany, M.N.3
-
62
-
-
0037902411
-
Investigation convective heat transfer and flow features of nanofluids
-
Xuan Y, Li Q. Investigation convective heat transfer and flow features of nanofluids. J Heat Transfer 2002;125:151-5.
-
(2002)
J Heat Transfer
, vol.125
, pp. 151-155
-
-
Xuan, Y.1
Li, Q.2
-
63
-
-
13644261470
-
Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
-
Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transfer 2005;48:1107-16.
-
(2005)
Int J Heat Mass Transfer
, vol.48
, pp. 1107-1116
-
-
Yang, Y.1
Zhang, Z.G.2
Grulke, E.A.3
Anderson, W.B.4
Wu, G.5
-
64
-
-
33645688120
-
Effect of nanofluid on the heat transport capability in an oscillatory heat pipe
-
Ma HB, Wilson C, Borgmeyer B, Park K, Yu Q. Effect of nanofluid on the heat transport capability in an oscillatory heat pipe. Appl Phys Lett 2006;88:143116.
-
(2006)
Appl Phys Lett
, vol.88
, pp. 143116
-
-
Ma, H.B.1
Wilson, C.2
Borgmeyer, B.3
Park, K.4
Yu, Q.5
-
65
-
-
40149091225
-
Heat trasnfer behaviour of aqueous suspensions of titanate nanofluids
-
Chen H, Yang W, He Y, Ding Y, Zhang L, Tan C, Lapkin AA, Bavykin DV. Heat trasnfer behaviour of aqueous suspensions of titanate nanofluids. Powder Technol 2008;183:63-72.
-
(2008)
Powder Technol
, vol.183
, pp. 63-72
-
-
Chen, H.1
Yang, W.2
He, Y.3
Ding, Y.4
Zhang, L.5
Tan, C.6
Lapkin, A.A.7
Bavykin, D.V.8
-
66
-
-
50549090047
-
Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid
-
Kulkarni DP, Namburu PK, Ed Bargar H, Das DK. Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transfer Eng 2008;29(12):1027-35.
-
(2008)
Heat Transfer Eng
, vol.29
, Issue.12
, pp. 1027-1035
-
-
Kulkarni, D.P.1
Namburu, P.K.2
Ed Bargar, H.3
Das, D.K.4
-
67
-
-
84919676695
-
Enhanced heat transfer trough the use of nanofluids in forced convenction
-
Faulkner D.J., Rector D.R., Davidson J., Shekarriz R., Enhanced heat transfer trough the use of nanofluids in forced convenction. In: The proceeding of IMECE 2004. Anaheim, CA, USA, November 13-19; 2004.
-
The Proceeding of IMECE 2004. Anaheim, CA, USA, November 13-19; 2004
-
-
Faulkner, D.J.1
Rector, D.R.2
Davidson, J.3
Shekarriz, R.4
-
68
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
-
Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 1998;11:151-70.
-
(1998)
Exp Heat Transfer
, vol.11
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
69
-
-
33750694638
-
Heat transfer characteristics of nanofluids: A review
-
Wang Xiang-Qi, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 2007;46:1-19.
-
(2007)
Int J Therm Sci
, vol.46
, pp. 1-19
-
-
Wang, X.-Q.1
Mujumdar, A.S.2
-
70
-
-
64749113545
-
Review of convective heat transfer enhancement with nanofluids
-
Kakac¸ S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transfer 2009;52:3187-96.
-
(2009)
Int J Heat Mass Transfer
, vol.52
, pp. 3187-3196
-
-
Kakac¸, S.1
Pramuanjaroenkij, A.2
-
72
-
-
29444436413
-
Formulation of nanofluids for natural convective heat transfer applications
-
Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 2005;26:855-64.
-
(2005)
Int J Heat Fluid Flow
, vol.26
, pp. 855-864
-
-
Wen, D.1
Ding, Y.2
-
73
-
-
33646734940
-
Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids)
-
Wen D, Ding Y. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids). IEEE Trans Nanotechnol 2006;5:220-7.
-
(2006)
IEEE Trans Nanotechnol
, vol.5
, pp. 220-227
-
-
Wen, D.1
Ding, Y.2
-
74
-
-
42549095595
-
Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/ water nanoparticle colloids (nanofluids) in horizontal tubes
-
Williams W, Buongiorno J, Hu L-W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/ water nanoparticle colloids (nanofluids) in horizontal tubes. ASME J Heat Transfer 2008;130:1-6.
-
(2008)
ASME J Heat Transfer
, vol.130
, pp. 1-6
-
-
Williams, W.1
Buongiorno, J.2
Hu, L.-W.3
-
76
-
-
0041520671
-
Pool boiling of nano-fluids on horizontal narrow tubes
-
Das SK, Putra N, Roetzel W. Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiphase Flow 2003;29:1237-47.
-
(2003)
Int J Multiphase Flow
, vol.29
, pp. 1237-1247
-
-
Das, S.K.1
Putra, N.2
Roetzel, W.3
-
77
-
-
17944373694
-
3-water nanofluids from a plain surface in a pool
-
3-water nanofluids from a plain surface in a pool. Int J Heat Mass Transfer 2005;48:2407-19.
-
(2005)
Int J Heat Mass Transfer
, vol.48
, pp. 2407-2419
-
-
Bang, J.C.1
Chang, S.H.2
-
78
-
-
0242580836
-
Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer
-
You SM, Kim JH, Kim KH. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 2003;83:3374-6.
-
(2003)
Appl Phys Lett
, vol.83
, pp. 3374-3376
-
-
You, S.M.1
Kim, J.H.2
Kim, K.H.3
-
79
-
-
28444458446
-
Role of ions in pool boiling heat transfer of pure and silica nanofluids
-
Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett 2005;87:233107.
-
(2005)
Appl Phys Lett
, vol.87
, pp. 233107
-
-
Milanova, D.1
Kumar, R.2
-
80
-
-
0142156221
-
Pool boiling heat transfer experiments in silica -water nano-fluids
-
Vassallo P, Kumar R, D'Amico S. Pool boiling heat transfer experiments in silica -water nano-fluids. Int J Heat Mass Transfer 2004;47(2):407-11.
-
(2004)
Int J Heat Mass Transfer
, vol.47
, Issue.2
, pp. 407-411
-
-
Vassallo, P.1
Kumar, R.2
D'Amico, S.3
-
81
-
-
34248194316
-
Boiling heat transfer characteristic of nanofluids jet impingement on a plate surface
-
Liu ZH, Qui YH. Boiling heat transfer characteristic of nanofluids jet impingement on a plate surface. Heat Mass Transfer 2007;43:699-706.
-
(2007)
Heat Mass Transfer
, vol.43
, pp. 699-706
-
-
Liu, Z.H.1
Qui, Y.H.2
-
82
-
-
82655187063
-
Nanofluid optical property characterization: Towards efficient direct absorption solar collectors
-
Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 2011;6:225.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 225
-
-
Taylor, R.A.1
Phelan, P.E.2
Otanicar, T.P.3
Adrian, R.4
Prasher, R.5
-
83
-
-
84863954756
-
Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures
-
Gan Y, Qiao L. Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures. Energy Fuels 2012;26:4224-30.
-
(2012)
Energy Fuels
, vol.26
, pp. 4224-4230
-
-
Gan, Y.1
Qiao, L.2
-
84
-
-
84862908133
-
Thermal properties of carbon black aqueous nanofluids for solar absorption
-
Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 2011;6:457.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 457
-
-
Han, D.1
Meng, Z.2
Wu, D.3
Zhang, C.4
Zhu, H.5
-
85
-
-
81855187039
-
Enhancing, optical efficiency of a linear parabolic solar collector through nanofluids
-
Khullar V, Tyagi H. Enhancing, optical efficiency of a linear parabolic solar collector through nanofluids. AIP Conf Proc 2011;1391:353.
-
(2011)
AIP Conf Proc
, vol.1391
, pp. 353
-
-
Khullar, V.1
Tyagi, H.2
-
86
-
-
80051546866
-
Scattering and absorption properties of carbon nanohorn-based nanofluids for solar energy applications
-
Mercatelli L, Sani E, Fontani D, Zaccanti G, Martelli F, Di Ninni P. Scattering and absorption properties of carbon nanohorn-based nanofluids for solar energy applications. J Eur Opt Soc - Rapid Publ 2011;6:11025.
-
(2011)
J Eur Opt Soc - Rapid Publ
, vol.6
, pp. 11025
-
-
Mercatelli, L.1
Sani, E.2
Fontani, D.3
Zaccanti, G.4
Martelli, F.5
Di Ninni, P.6
-
87
-
-
84876328832
-
Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids
-
de Risi A, Milanese M, Laforgia D. Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renewable Energy 2013;58:134-9.
-
(2013)
Renewable Energy
, vol.58
, pp. 134-139
-
-
De Risi, A.1
Milanese, M.2
Laforgia, D.3
-
88
-
-
84884954511
-
Optical absorption measurements at high temperature (500 °C) of oxide nanoparticles for application as gas-based nanofluid in solar thermal collector systems
-
Cretì A, Epifani M, Taurino A, Catalano M, Casino F, Lomascolo M, Milanese M, de Risi A. Optical absorption measurements at high temperature (500 °C) of oxide nanoparticles for application as gas-based nanofluid in solar thermal collector systems. Adv Mater Res 2013;773:80-6.
-
(2013)
Adv Mater Res
, vol.773
, pp. 80-86
-
-
Cretì, A.1
Epifani, M.2
Taurino, A.3
Catalano, M.4
Casino, F.5
Lomascolo, M.6
Milanese, M.7
De Risi, A.8
-
89
-
-
84864283515
-
Evaluation of the effect of nano fluid-based absorbers on direct solar collector
-
Saidur R, Meng TC, Said Z, Hasanuzzaman M, Kamyar A. Evaluation of the effect of nano fluid-based absorbers on direct solar collector. Int J Heat Mass Transfer 2012;55:5899-907.
-
(2012)
Int J Heat Mass Transfer
, vol.55
, pp. 5899-5907
-
-
Saidur, R.1
Meng, T.C.2
Said, Z.3
Hasanuzzaman, M.4
Kamyar, A.5
-
90
-
-
65649083108
-
Optical properties of liquids for direct absorption solar thermal energy systems
-
Otanicar PT, Phelan PE, Golden JS. Optical properties of liquids for direct absorption solar thermal energy systems. Sol Energy 2009;83:969.
-
(2009)
Sol Energy
, vol.83
, pp. 969
-
-
Otanicar, P.T.1
Phelan, P.E.2
Golden, J.S.3
-
91
-
-
84890856769
-
Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation
-
Zhu Q, Cui Y, Mu L, Tang L. Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation. Int J Thermophys 2012.
-
(2012)
Int J Thermophys
-
-
Zhu, Q.1
Cui, Y.2
Mu, L.3
Tang, L.4
-
92
-
-
84255194057
-
Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers
-
Mercatelli L, Sani E, Zaccanti G, Martelli F, Di Ninni P, Barison S, Pagura C, Agresti F, Jafrancesco D. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res Lett 2011;6:282.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 282
-
-
Mercatelli, L.1
Sani, E.2
Zaccanti, G.3
Martelli, F.4
Di Ninni, P.5
Barison, S.6
Pagura, C.7
Agresti, F.8
Jafrancesco, D.9
-
93
-
-
80051546789
-
Potential of carbon nanohorn-based suspensions for solar thermal collectors
-
Sani E, Mercatelli L, Barison S, Pagura C, Agresti F, Colla L, Sansoni P. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol Energy Mater Sol Cells 2011;95:2994-3000.
-
(2011)
Sol Energy Mater Sol Cells
, vol.95
, pp. 2994-3000
-
-
Sani, E.1
Mercatelli, L.2
Barison, S.3
Pagura, C.4
Agresti, F.5
Colla, L.6
Sansoni, P.7
-
95
-
-
84866326374
-
Radiative properties of dense nanofluids
-
Wei W, Fedorov AG, Luo Z, Ni M. Radiative properties of dense nanofluids. Appl Opt 2012;51:6159.
-
(2012)
Appl Opt
, vol.51
, pp. 6159
-
-
Wei, W.1
Fedorov, A.G.2
Luo, Z.3
Ni, M.4
-
96
-
-
84899859295
-
High temperature and longterm stability of carbon nanotube nanofluids for direct absorption solar thermal collectors
-
Hordy N, Rabilloud D, Meunier JL, Coulombe S. High temperature and longterm stability of carbon nanotube nanofluids for direct absorption solar thermal collectors,. Sol Energy 2014;105:82-90.
-
(2014)
Sol Energy
, vol.105
, pp. 82-90
-
-
Hordy, N.1
Rabilloud, D.2
Meunier, J.L.3
Coulombe, S.4
-
98
-
-
84903720838
-
Optical property of blended plasmonic nanofluid based on gold nanorods
-
Jeon J, Park S, Lee BJ. Optical property of blended plasmonic nanofluid based on gold nanorods. Opt Express 2014;22:A1101.
-
(2014)
Opt Express
, vol.22
, pp. A1101
-
-
Jeon, J.1
Park, S.2
Lee, B.J.3
|