-
1
-
-
84899540542
-
Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS
-
10.1007/s00231-013-1153-8
-
LotfizadehDehkordi B et al (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49(8):1109-1115
-
(2013)
Heat Mass Transf
, vol.49
, Issue.8
, pp. 1109-1115
-
-
Lotfizadehdehkordi, B.1
-
3
-
-
84873257098
-
Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels
-
10.3390/e15010144
-
Hassan M et al (2013) Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy 15(1):144-155
-
(2013)
Entropy
, vol.15
, Issue.1
, pp. 144-155
-
-
Hassan, M.1
-
4
-
-
84896488856
-
Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods
-
10.1016/j.apt.2013.11.015
-
Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2013) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25(2):801-810
-
(2013)
Adv Powder Technol
, vol.25
, Issue.2
, pp. 801-810
-
-
Azizi-Toupkanloo, H.1
Goharshadi, E.K.2
Nancarrow, P.3
-
5
-
-
84873553171
-
Silver colloid nanoparticles: Ultrasound-assisted synthesis, electrical and rheological properties
-
10.1016/j.powtec.2012.12.059
-
Goharshadi EK, Azizi-Toupkanloo H (2013) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97-101
-
(2013)
Powder Technol
, vol.237
, pp. 97-101
-
-
Goharshadi, E.K.1
Azizi-Toupkanloo, H.2
-
6
-
-
70349462796
-
Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids
-
10.1016/j.powtec.2009.08.010
-
Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196(3):326-330
-
(2009)
Powder Technol
, vol.196
, Issue.3
, pp. 326-330
-
-
Ganguly, S.1
Sikdar, S.2
Basu, S.3
-
8
-
-
80052054157
-
Highly thermo-conductive fluid with boron nitride nanofillers
-
10.1021/nn201946x
-
Zhi C et al (2011) Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8):6571-6577
-
(2011)
ACS Nano
, vol.5
, Issue.8
, pp. 6571-6577
-
-
Zhi, C.1
-
9
-
-
84905659336
-
Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids
-
doi: 10.1038/srep04039
-
Sundar LS et al (2014) Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci Rep 4. doi: 10.1038/srep04039
-
(2014)
Sci Rep
, vol.4
-
-
Sundar, L.S.1
-
10
-
-
77953293135
-
Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water
-
10.1016/j.ijheatmasstransfer.2010.03.008
-
Yeganeh M et al (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53(15-16):3186-3192
-
(2010)
Int J Heat Mass Transf
, vol.53
, Issue.15-16
, pp. 3186-3192
-
-
Yeganeh, M.1
-
11
-
-
34547169031
-
Carbon nanofibers: A novel nanofiller for nanofluid applications
-
10.1002/smll.200700066
-
Lee KJ, Yoon SH, Jang J (2007) Carbon nanofibers: a novel nanofiller for nanofluid applications. Small 3(7):1209-1213
-
(2007)
Small
, vol.3
, Issue.7
, pp. 1209-1213
-
-
Lee, K.J.1
Yoon, S.H.2
Jang, J.3
-
12
-
-
84862908133
-
Thermal properties of carbon black aqueous nanofluids for solar absorption
-
10.1186/1556-276X-6-457
-
Dongxiao H et al (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 457
-
-
Dongxiao, H.1
-
13
-
-
84355163124
-
Effect of CNT structures on thermal conductivity and stability of nanofluid
-
10.1016/j.ijheatmasstransfer.2011.11.004
-
Nasiri A et al (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5-6):1529-1535
-
(2012)
Int J Heat Mass Transf
, vol.55
, Issue.5-6
, pp. 1529-1535
-
-
Nasiri, A.1
-
14
-
-
38849120568
-
Thermal conductivity of single-wall carbon nanotube dispersions: Role of interfacial effects
-
10.1021/jp711164h
-
Nanda J et al (2008) Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J Phys Chem C 112(3):654-658
-
(2008)
J Phys Chem C
, vol.112
, Issue.3
, pp. 654-658
-
-
Nanda, J.1
-
15
-
-
4344564607
-
Thermal conductivity of suspensions of carbon nanotubes in water
-
10.1023/B:IJOT.0000038494.22494.04
-
Assael M et al (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25(4):971-985
-
(2004)
Int J Thermophys
, vol.25
, Issue.4
, pp. 971-985
-
-
Assael, M.1
-
16
-
-
84861092556
-
Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation
-
10.1007/s10853-012-6451-x 10.1007/s10853-012-6451-x
-
Chen L, Xie H, Yu W (2012) Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation. J Mater Sci 47(14):5590-5595. doi: 10.1007/s10853-012-6451-x
-
(2012)
J Mater Sci
, vol.47
, Issue.14
, pp. 5590-5595
-
-
Chen, L.1
Xie, H.2
Yu, W.3
-
17
-
-
13644261470
-
Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
-
10.1016/j.ijheatmasstransfer.2004.09.038
-
Yang Y et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48(6):1107-1116
-
(2005)
Int J Heat Mass Transf
, vol.48
, Issue.6
, pp. 1107-1116
-
-
Yang, Y.1
-
18
-
-
84880001883
-
Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid
-
10.1016/j.ijheatmasstransfer.2013.06.013
-
Lee SW, Kim KM, Bang IC (2013) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348-356
-
(2013)
Int J Heat Mass Transf
, vol.65
, pp. 348-356
-
-
Lee, S.W.1
Kim, K.M.2
Bang, I.C.3
-
19
-
-
79951809792
-
Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets
-
10.1016/j.physleta.2011.01.040
-
Yu W et al (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375(10):1323-1328
-
(2011)
Phys Lett A
, vol.375
, Issue.10
, pp. 1323-1328
-
-
Yu, W.1
-
20
-
-
84855814595
-
Thermal percolation in stable graphite suspensions
-
10.1021/nl203276y
-
Zheng R et al (2011) Thermal percolation in stable graphite suspensions. Nano Lett 12(1):188-192
-
(2011)
Nano Lett
, vol.12
, Issue.1
, pp. 188-192
-
-
Zheng, R.1
-
21
-
-
84892540487
-
Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
-
10.1186/1556-276X-9-15
-
Mehrali M et al (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9(1):1-12
-
(2014)
Nanoscale Res Lett
, vol.9
, Issue.1
, pp. 1-12
-
-
Mehrali, M.1
-
22
-
-
84891632542
-
Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation
-
10.1007/s10853-013-7831-6 10.1007/s10853-013-7831-6
-
Lee G-J, Rhee CK (2014) Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci 49(4):1506-1511. doi: 10.1007/s10853-013-7831-6
-
(2014)
J Mater Sci
, vol.49
, Issue.4
, pp. 1506-1511
-
-
Lee, G.-J.1
Rhee, C.K.2
-
23
-
-
79959463537
-
Synthesis and nanofluid application of silver nanoparticles decorated graphene
-
10.1039/c0jm04106h
-
Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21(26):9702-9709
-
(2011)
J Mater Chem
, vol.21
, Issue.26
, pp. 9702-9709
-
-
Baby, T.T.1
Ramaprabhu, S.2
-
24
-
-
84899859295
-
High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors
-
10.1016/j.solener.2014.03.013
-
Hordy N et al (2014) High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105:82-90
-
(2014)
Sol Energy
, vol.105
, pp. 82-90
-
-
Hordy, N.1
-
25
-
-
77649233259
-
Enhanced thermal conductivity of nanofluids: A state-of-the-art review
-
10.1007/s10404-009-0524-4
-
Özerinç S, Kakaç S, YazIcIoǧlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145-170
-
(2010)
Microfluid Nanofluid
, vol.8
, Issue.2
, pp. 145-170
-
-
Özerinç, S.1
Kakaç, S.2
Yazicioǧlu, A.G.3
-
26
-
-
84900799901
-
Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step
-
10.1016/j.amc.2014.04.051
-
Togun H et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153-170
-
(2014)
Appl Math Comput
, vol.239
, pp. 153-170
-
-
Togun, H.1
-
27
-
-
84882713206
-
Preparation, characterization, and rheological properties of graphene-glycerol nanofluids
-
10.1016/j.cej.2013.07.006
-
Moghaddam MB et al (2013) Preparation, characterization, and rheological properties of graphene-glycerol nanofluids. Chem Eng J 231:365-372
-
(2013)
Chem Eng J
, vol.231
, pp. 365-372
-
-
Moghaddam, M.B.1
-
28
-
-
84881116636
-
Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials
-
10.1016/j.energy.2013.05.050
-
Mehrali M et al (2013) Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy 58:628-634
-
(2013)
Energy
, vol.58
, pp. 628-634
-
-
Mehrali, M.1
-
29
-
-
84884633560
-
Preparation and characterization of palmtic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material
-
10.1016/j.applthermaleng.2013.08.035
-
Mehrali M et al (2013) Preparation and characterization of palmtic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng 61(3):633-640
-
(2013)
Appl Therm Eng
, vol.61
, Issue.3
, pp. 633-640
-
-
Mehrali, M.1
-
30
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
10.1126/science.1102896
-
Novoselov K et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666-669
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.1
-
31
-
-
1542743726
-
C60: Buckminsterfullerene
-
10.1038/318162a0
-
Kroto H, Heath J, O'Brien S et al (1985) C60: Buckminsterfullerene. Nature 3(18):162-163
-
(1985)
Nature
, vol.3
, Issue.18
, pp. 162-163
-
-
Kroto, H.1
Heath, J.2
O'Brien, S.3
-
32
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
10.1038/354056a0
-
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56-58
-
(1991)
Nature
, vol.354
, Issue.6348
, pp. 56-58
-
-
Iijima, S.1
-
34
-
-
38749096585
-
Molecular doping of graphene
-
10.1021/nl072364w
-
Wehling T et al (2008) Molecular doping of graphene. Nano Lett 8(1):173-177
-
(2008)
Nano Lett
, vol.8
, Issue.1
, pp. 173-177
-
-
Wehling, T.1
-
35
-
-
70350031601
-
Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method
-
10.1016/j.carbon.2009.09.013
-
Li N et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255-259
-
(2010)
Carbon
, vol.48
, Issue.1
, pp. 255-259
-
-
Li, N.1
-
36
-
-
66449118468
-
Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
-
10.1021/nl803279t
-
Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752-1758
-
(2009)
Nano Lett
, vol.9
, Issue.5
, pp. 1752-1758
-
-
Wei, D.1
-
37
-
-
79952177809
-
Toward N-doped graphene via solvothermal synthesis
-
10.1021/cm102666r
-
Deng D et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188-1193
-
(2011)
Chem Mater
, vol.23
, Issue.5
, pp. 1188-1193
-
-
Deng, D.1
-
38
-
-
70350645271
-
Simultaneous nitrogen doping and reduction of graphene oxide
-
10.1021/ja907098f
-
Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939-15944
-
(2009)
J Am Chem Soc
, vol.131
, Issue.43
, pp. 15939-15944
-
-
Li, X.1
-
39
-
-
77955414133
-
Production of graphene from graphite oxide using urea as expansion-reduction agent
-
10.1016/j.carbon.2010.05.043
-
Wakeland S et al (2010) Production of graphene from graphite oxide using urea as expansion-reduction agent. Carbon 48(12):3463-3470
-
(2010)
Carbon
, vol.48
, Issue.12
, pp. 3463-3470
-
-
Wakeland, S.1
-
40
-
-
84896994544
-
Synthesis, mechanical properties and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites
-
doi: 10.1021/am500845x
-
Mehrali M et al. (2014) Synthesis, mechanical properties and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6(6):3947-3962. doi: 10.1021/am500845x
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, Issue.6
, pp. 3947-3962
-
-
Mehrali, M.1
-
41
-
-
84876583368
-
Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents
-
10.1039/c2ta00887d
-
Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248-2255
-
(2013)
J Mater Chem A
, vol.1
, Issue.6
, pp. 2248-2255
-
-
Guo, H.-L.1
-
42
-
-
84881616255
-
Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor
-
10.1016/j.carbon.2013.07.026
-
Lu Y et al (2013) Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon 63:508-516
-
(2013)
Carbon
, vol.63
, pp. 508-516
-
-
Lu, Y.1
-
43
-
-
72649089819
-
Synthesis, structure, and properties of boron- and nitrogen-doped graphene
-
Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726-4730
-
(2009)
Adv Mater
, vol.21
, Issue.46
, pp. 4726-4730
-
-
Panchakarla, L.S.1
-
44
-
-
84855793616
-
2O nanofluid on the efficiency of a flat-plate solar collector
-
10.1016/j.solener.2011.12.003
-
2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86(2):771-779
-
(2012)
Sol Energy
, vol.86
, Issue.2
, pp. 771-779
-
-
Yousefi, T.1
-
45
-
-
84883599248
-
High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity
-
10.1016/j.carbon.2013.07.063
-
Sun Z et al (2013) High-yield exfoliation of graphite in acrylate polymers: a stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon 64:288-294
-
(2013)
Carbon
, vol.64
, pp. 288-294
-
-
Sun, Z.1
-
46
-
-
84888129886
-
Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation
-
10.1016/j.ultsonch.2013.08.012
-
Mehrali M et al (2014) Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrason Sonochem 21(2):735-742
-
(2014)
Ultrason Sonochem
, vol.21
, Issue.2
, pp. 735-742
-
-
Mehrali, M.1
-
48
-
-
0037383054
-
Production of aqueous colloidal dispersions of carbon nanotubes
-
10.1016/S0021-9797(02)00176-5
-
Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89-94
-
(2003)
J Colloid Interface Sci
, vol.260
, Issue.1
, pp. 89-94
-
-
Jiang, L.1
Gao, L.2
Sun, J.3
-
50
-
-
84897556400
-
Standard reference data for the thermal conductivity of water
-
10.1063/1.555963
-
Ramires ML et al (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377
-
(1995)
J Phys Chem Ref Data
, vol.24
, pp. 1377
-
-
Ramires, M.L.1
-
51
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids
-
Buongiorno J et al. (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312-094312-14.
-
(2009)
J Appl Phys
, vol.106
, Issue.9
, pp. 094312-09431214
-
-
Buongiorno, J.1
-
52
-
-
79959276096
-
4 nanofluids
-
10.1016/j.jmmm.2010.08.016
-
4 nanofluids. J Magn Magn Mater 322(24):3895-3901
-
(2010)
J Magn Magn Mater
, vol.322
, Issue.24
, pp. 3895-3901
-
-
Abareshi, M.1
-
53
-
-
84881315383
-
Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering
-
10.1007/s00339-013-7607-5
-
Yang P et al (2013) Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering. Appl Phys A 112(3):759-765
-
(2013)
Appl Phys A
, vol.112
, Issue.3
, pp. 759-765
-
-
Yang, P.1
-
54
-
-
33847407147
-
Stability and thermal conductivity characteristics of nanofluids
-
10.1016/j.tca.2006.11.036
-
Hwang Y et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1):70-74
-
(2007)
Thermochim Acta
, vol.455
, Issue.1
, pp. 70-74
-
-
Hwang, Y.1
-
55
-
-
8644220606
-
Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)
-
10.2514/1.9934
-
Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transfer 18(4):481-485
-
(2004)
J Thermophys Heat Transfer
, vol.18
, Issue.4
, pp. 481-485
-
-
Wen, D.1
Ding, Y.2
-
56
-
-
32544455326
-
Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes
-
10.1007/s11837-005-0180-4
-
Marquis F, Chibante L (2005) Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM 57(12):32-43
-
(2005)
JOM
, vol.57
, Issue.12
, pp. 32-43
-
-
Marquis, F.1
Chibante, L.2
-
57
-
-
47249104612
-
The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)
-
10.1088/0957-4484/19/31/315701
-
Amrollahi A, Hamidi A, Rashidi A (2008) The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19(31):315701
-
(2008)
Nanotechnology
, vol.19
, Issue.31
, pp. 315701
-
-
Amrollahi, A.1
Hamidi, A.2
Rashidi, A.3
-
58
-
-
84877082796
-
Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure
-
10.1039/c3dt32981j
-
Wang B, Hao J, Li H (2013) Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure. Dalton Trans 42(16):5866-5873
-
(2013)
Dalton Trans
, vol.42
, Issue.16
, pp. 5866-5873
-
-
Wang, B.1
Hao, J.2
Li, H.3
-
59
-
-
80655141580
-
Thermal conductivity enhancement of nanofluids containing graphene nanosheets
-
Sen Gupta S et al. (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110(8):084302-084302-6.
-
(2011)
J Appl Phys
, vol.110
, Issue.8
, pp. 084302-0843026
-
-
Sen Gupta, S.1
-
60
-
-
84870519843
-
Electrical conductivity of ceramic and metallic nanofluids
-
10.1016/j.colsurfa.2012.10.010
-
Sarojini KGK et al (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39-46
-
(2013)
Colloids Surf A
, vol.417
, pp. 39-46
-
-
Sarojini, K.G.K.1
|