메뉴 건너뛰기




Volumn 49, Issue 20, 2014, Pages 7156-7171

Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids

Author keywords

[No Author keywords available]

Indexed keywords

DOPING (ADDITIVES); ELECTRIC CONDUCTIVITY; GRAPHENE; NANOFLUIDICS; NANOPARTICLES; SODIUM COMPOUNDS; SPECIFIC HEAT; VISCOSITY;

EID: 84905638076     PISSN: 00222461     EISSN: 15734803     Source Type: Journal    
DOI: 10.1007/s10853-014-8424-8     Document Type: Article
Times cited : (115)

References (60)
  • 1
    • 84899540542 scopus 로고    scopus 로고
    • Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS
    • 10.1007/s00231-013-1153-8
    • LotfizadehDehkordi B et al (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49(8):1109-1115
    • (2013) Heat Mass Transf , vol.49 , Issue.8 , pp. 1109-1115
    • Lotfizadehdehkordi, B.1
  • 3
    • 84873257098 scopus 로고    scopus 로고
    • Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels
    • 10.3390/e15010144
    • Hassan M et al (2013) Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy 15(1):144-155
    • (2013) Entropy , vol.15 , Issue.1 , pp. 144-155
    • Hassan, M.1
  • 4
    • 84896488856 scopus 로고    scopus 로고
    • Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods
    • 10.1016/j.apt.2013.11.015
    • Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2013) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25(2):801-810
    • (2013) Adv Powder Technol , vol.25 , Issue.2 , pp. 801-810
    • Azizi-Toupkanloo, H.1    Goharshadi, E.K.2    Nancarrow, P.3
  • 5
    • 84873553171 scopus 로고    scopus 로고
    • Silver colloid nanoparticles: Ultrasound-assisted synthesis, electrical and rheological properties
    • 10.1016/j.powtec.2012.12.059
    • Goharshadi EK, Azizi-Toupkanloo H (2013) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97-101
    • (2013) Powder Technol , vol.237 , pp. 97-101
    • Goharshadi, E.K.1    Azizi-Toupkanloo, H.2
  • 6
    • 70349462796 scopus 로고    scopus 로고
    • Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids
    • 10.1016/j.powtec.2009.08.010
    • Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196(3):326-330
    • (2009) Powder Technol , vol.196 , Issue.3 , pp. 326-330
    • Ganguly, S.1    Sikdar, S.2    Basu, S.3
  • 8
    • 80052054157 scopus 로고    scopus 로고
    • Highly thermo-conductive fluid with boron nitride nanofillers
    • 10.1021/nn201946x
    • Zhi C et al (2011) Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8):6571-6577
    • (2011) ACS Nano , vol.5 , Issue.8 , pp. 6571-6577
    • Zhi, C.1
  • 9
    • 84905659336 scopus 로고    scopus 로고
    • Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids
    • doi: 10.1038/srep04039
    • Sundar LS et al (2014) Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci Rep 4. doi: 10.1038/srep04039
    • (2014) Sci Rep , vol.4
    • Sundar, L.S.1
  • 10
    • 77953293135 scopus 로고    scopus 로고
    • Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water
    • 10.1016/j.ijheatmasstransfer.2010.03.008
    • Yeganeh M et al (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53(15-16):3186-3192
    • (2010) Int J Heat Mass Transf , vol.53 , Issue.15-16 , pp. 3186-3192
    • Yeganeh, M.1
  • 11
    • 34547169031 scopus 로고    scopus 로고
    • Carbon nanofibers: A novel nanofiller for nanofluid applications
    • 10.1002/smll.200700066
    • Lee KJ, Yoon SH, Jang J (2007) Carbon nanofibers: a novel nanofiller for nanofluid applications. Small 3(7):1209-1213
    • (2007) Small , vol.3 , Issue.7 , pp. 1209-1213
    • Lee, K.J.1    Yoon, S.H.2    Jang, J.3
  • 12
    • 84862908133 scopus 로고    scopus 로고
    • Thermal properties of carbon black aqueous nanofluids for solar absorption
    • 10.1186/1556-276X-6-457
    • Dongxiao H et al (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457
    • (2011) Nanoscale Res Lett , vol.6 , pp. 457
    • Dongxiao, H.1
  • 13
    • 84355163124 scopus 로고    scopus 로고
    • Effect of CNT structures on thermal conductivity and stability of nanofluid
    • 10.1016/j.ijheatmasstransfer.2011.11.004
    • Nasiri A et al (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5-6):1529-1535
    • (2012) Int J Heat Mass Transf , vol.55 , Issue.5-6 , pp. 1529-1535
    • Nasiri, A.1
  • 14
    • 38849120568 scopus 로고    scopus 로고
    • Thermal conductivity of single-wall carbon nanotube dispersions: Role of interfacial effects
    • 10.1021/jp711164h
    • Nanda J et al (2008) Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J Phys Chem C 112(3):654-658
    • (2008) J Phys Chem C , vol.112 , Issue.3 , pp. 654-658
    • Nanda, J.1
  • 15
    • 4344564607 scopus 로고    scopus 로고
    • Thermal conductivity of suspensions of carbon nanotubes in water
    • 10.1023/B:IJOT.0000038494.22494.04
    • Assael M et al (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25(4):971-985
    • (2004) Int J Thermophys , vol.25 , Issue.4 , pp. 971-985
    • Assael, M.1
  • 16
    • 84861092556 scopus 로고    scopus 로고
    • Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation
    • 10.1007/s10853-012-6451-x 10.1007/s10853-012-6451-x
    • Chen L, Xie H, Yu W (2012) Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation. J Mater Sci 47(14):5590-5595. doi: 10.1007/s10853-012-6451-x
    • (2012) J Mater Sci , vol.47 , Issue.14 , pp. 5590-5595
    • Chen, L.1    Xie, H.2    Yu, W.3
  • 17
    • 13644261470 scopus 로고    scopus 로고
    • Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
    • 10.1016/j.ijheatmasstransfer.2004.09.038
    • Yang Y et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48(6):1107-1116
    • (2005) Int J Heat Mass Transf , vol.48 , Issue.6 , pp. 1107-1116
    • Yang, Y.1
  • 18
    • 84880001883 scopus 로고    scopus 로고
    • Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid
    • 10.1016/j.ijheatmasstransfer.2013.06.013
    • Lee SW, Kim KM, Bang IC (2013) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348-356
    • (2013) Int J Heat Mass Transf , vol.65 , pp. 348-356
    • Lee, S.W.1    Kim, K.M.2    Bang, I.C.3
  • 19
    • 79951809792 scopus 로고    scopus 로고
    • Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets
    • 10.1016/j.physleta.2011.01.040
    • Yu W et al (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375(10):1323-1328
    • (2011) Phys Lett A , vol.375 , Issue.10 , pp. 1323-1328
    • Yu, W.1
  • 20
    • 84855814595 scopus 로고    scopus 로고
    • Thermal percolation in stable graphite suspensions
    • 10.1021/nl203276y
    • Zheng R et al (2011) Thermal percolation in stable graphite suspensions. Nano Lett 12(1):188-192
    • (2011) Nano Lett , vol.12 , Issue.1 , pp. 188-192
    • Zheng, R.1
  • 21
    • 84892540487 scopus 로고    scopus 로고
    • Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
    • 10.1186/1556-276X-9-15
    • Mehrali M et al (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9(1):1-12
    • (2014) Nanoscale Res Lett , vol.9 , Issue.1 , pp. 1-12
    • Mehrali, M.1
  • 22
    • 84891632542 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation
    • 10.1007/s10853-013-7831-6 10.1007/s10853-013-7831-6
    • Lee G-J, Rhee CK (2014) Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci 49(4):1506-1511. doi: 10.1007/s10853-013-7831-6
    • (2014) J Mater Sci , vol.49 , Issue.4 , pp. 1506-1511
    • Lee, G.-J.1    Rhee, C.K.2
  • 23
    • 79959463537 scopus 로고    scopus 로고
    • Synthesis and nanofluid application of silver nanoparticles decorated graphene
    • 10.1039/c0jm04106h
    • Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21(26):9702-9709
    • (2011) J Mater Chem , vol.21 , Issue.26 , pp. 9702-9709
    • Baby, T.T.1    Ramaprabhu, S.2
  • 24
    • 84899859295 scopus 로고    scopus 로고
    • High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors
    • 10.1016/j.solener.2014.03.013
    • Hordy N et al (2014) High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105:82-90
    • (2014) Sol Energy , vol.105 , pp. 82-90
    • Hordy, N.1
  • 25
    • 77649233259 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of nanofluids: A state-of-the-art review
    • 10.1007/s10404-009-0524-4
    • Özerinç S, Kakaç S, YazIcIoǧlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145-170
    • (2010) Microfluid Nanofluid , vol.8 , Issue.2 , pp. 145-170
    • Özerinç, S.1    Kakaç, S.2    Yazicioǧlu, A.G.3
  • 26
    • 84900799901 scopus 로고    scopus 로고
    • Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step
    • 10.1016/j.amc.2014.04.051
    • Togun H et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153-170
    • (2014) Appl Math Comput , vol.239 , pp. 153-170
    • Togun, H.1
  • 27
    • 84882713206 scopus 로고    scopus 로고
    • Preparation, characterization, and rheological properties of graphene-glycerol nanofluids
    • 10.1016/j.cej.2013.07.006
    • Moghaddam MB et al (2013) Preparation, characterization, and rheological properties of graphene-glycerol nanofluids. Chem Eng J 231:365-372
    • (2013) Chem Eng J , vol.231 , pp. 365-372
    • Moghaddam, M.B.1
  • 28
    • 84881116636 scopus 로고    scopus 로고
    • Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials
    • 10.1016/j.energy.2013.05.050
    • Mehrali M et al (2013) Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy 58:628-634
    • (2013) Energy , vol.58 , pp. 628-634
    • Mehrali, M.1
  • 29
    • 84884633560 scopus 로고    scopus 로고
    • Preparation and characterization of palmtic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material
    • 10.1016/j.applthermaleng.2013.08.035
    • Mehrali M et al (2013) Preparation and characterization of palmtic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng 61(3):633-640
    • (2013) Appl Therm Eng , vol.61 , Issue.3 , pp. 633-640
    • Mehrali, M.1
  • 30
    • 7444220645 scopus 로고    scopus 로고
    • Electric field effect in atomically thin carbon films
    • 10.1126/science.1102896
    • Novoselov K et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666-669
    • (2004) Science , vol.306 , Issue.5696 , pp. 666-669
    • Novoselov, K.1
  • 31
    • 1542743726 scopus 로고
    • C60: Buckminsterfullerene
    • 10.1038/318162a0
    • Kroto H, Heath J, O'Brien S et al (1985) C60: Buckminsterfullerene. Nature 3(18):162-163
    • (1985) Nature , vol.3 , Issue.18 , pp. 162-163
    • Kroto, H.1    Heath, J.2    O'Brien, S.3
  • 32
    • 0342819025 scopus 로고
    • Helical microtubules of graphitic carbon
    • 10.1038/354056a0
    • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56-58
    • (1991) Nature , vol.354 , Issue.6348 , pp. 56-58
    • Iijima, S.1
  • 34
    • 38749096585 scopus 로고    scopus 로고
    • Molecular doping of graphene
    • 10.1021/nl072364w
    • Wehling T et al (2008) Molecular doping of graphene. Nano Lett 8(1):173-177
    • (2008) Nano Lett , vol.8 , Issue.1 , pp. 173-177
    • Wehling, T.1
  • 35
    • 70350031601 scopus 로고    scopus 로고
    • Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method
    • 10.1016/j.carbon.2009.09.013
    • Li N et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255-259
    • (2010) Carbon , vol.48 , Issue.1 , pp. 255-259
    • Li, N.1
  • 36
    • 66449118468 scopus 로고    scopus 로고
    • Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
    • 10.1021/nl803279t
    • Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752-1758
    • (2009) Nano Lett , vol.9 , Issue.5 , pp. 1752-1758
    • Wei, D.1
  • 37
    • 79952177809 scopus 로고    scopus 로고
    • Toward N-doped graphene via solvothermal synthesis
    • 10.1021/cm102666r
    • Deng D et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188-1193
    • (2011) Chem Mater , vol.23 , Issue.5 , pp. 1188-1193
    • Deng, D.1
  • 38
    • 70350645271 scopus 로고    scopus 로고
    • Simultaneous nitrogen doping and reduction of graphene oxide
    • 10.1021/ja907098f
    • Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939-15944
    • (2009) J Am Chem Soc , vol.131 , Issue.43 , pp. 15939-15944
    • Li, X.1
  • 39
    • 77955414133 scopus 로고    scopus 로고
    • Production of graphene from graphite oxide using urea as expansion-reduction agent
    • 10.1016/j.carbon.2010.05.043
    • Wakeland S et al (2010) Production of graphene from graphite oxide using urea as expansion-reduction agent. Carbon 48(12):3463-3470
    • (2010) Carbon , vol.48 , Issue.12 , pp. 3463-3470
    • Wakeland, S.1
  • 40
    • 84896994544 scopus 로고    scopus 로고
    • Synthesis, mechanical properties and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites
    • doi: 10.1021/am500845x
    • Mehrali M et al. (2014) Synthesis, mechanical properties and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6(6):3947-3962. doi: 10.1021/am500845x
    • (2014) ACS Appl Mater Interfaces , vol.6 , Issue.6 , pp. 3947-3962
    • Mehrali, M.1
  • 41
    • 84876583368 scopus 로고    scopus 로고
    • Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents
    • 10.1039/c2ta00887d
    • Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248-2255
    • (2013) J Mater Chem A , vol.1 , Issue.6 , pp. 2248-2255
    • Guo, H.-L.1
  • 42
    • 84881616255 scopus 로고    scopus 로고
    • Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor
    • 10.1016/j.carbon.2013.07.026
    • Lu Y et al (2013) Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon 63:508-516
    • (2013) Carbon , vol.63 , pp. 508-516
    • Lu, Y.1
  • 43
    • 72649089819 scopus 로고    scopus 로고
    • Synthesis, structure, and properties of boron- and nitrogen-doped graphene
    • Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726-4730
    • (2009) Adv Mater , vol.21 , Issue.46 , pp. 4726-4730
    • Panchakarla, L.S.1
  • 44
    • 84855793616 scopus 로고    scopus 로고
    • 2O nanofluid on the efficiency of a flat-plate solar collector
    • 10.1016/j.solener.2011.12.003
    • 2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86(2):771-779
    • (2012) Sol Energy , vol.86 , Issue.2 , pp. 771-779
    • Yousefi, T.1
  • 45
    • 84883599248 scopus 로고    scopus 로고
    • High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity
    • 10.1016/j.carbon.2013.07.063
    • Sun Z et al (2013) High-yield exfoliation of graphite in acrylate polymers: a stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon 64:288-294
    • (2013) Carbon , vol.64 , pp. 288-294
    • Sun, Z.1
  • 46
    • 84888129886 scopus 로고    scopus 로고
    • Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation
    • 10.1016/j.ultsonch.2013.08.012
    • Mehrali M et al (2014) Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrason Sonochem 21(2):735-742
    • (2014) Ultrason Sonochem , vol.21 , Issue.2 , pp. 735-742
    • Mehrali, M.1
  • 48
    • 0037383054 scopus 로고    scopus 로고
    • Production of aqueous colloidal dispersions of carbon nanotubes
    • 10.1016/S0021-9797(02)00176-5
    • Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89-94
    • (2003) J Colloid Interface Sci , vol.260 , Issue.1 , pp. 89-94
    • Jiang, L.1    Gao, L.2    Sun, J.3
  • 50
    • 84897556400 scopus 로고
    • Standard reference data for the thermal conductivity of water
    • 10.1063/1.555963
    • Ramires ML et al (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377
    • (1995) J Phys Chem Ref Data , vol.24 , pp. 1377
    • Ramires, M.L.1
  • 51
    • 70349607220 scopus 로고    scopus 로고
    • A benchmark study on the thermal conductivity of nanofluids
    • Buongiorno J et al. (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312-094312-14.
    • (2009) J Appl Phys , vol.106 , Issue.9 , pp. 094312-09431214
    • Buongiorno, J.1
  • 52
    • 79959276096 scopus 로고    scopus 로고
    • 4 nanofluids
    • 10.1016/j.jmmm.2010.08.016
    • 4 nanofluids. J Magn Magn Mater 322(24):3895-3901
    • (2010) J Magn Magn Mater , vol.322 , Issue.24 , pp. 3895-3901
    • Abareshi, M.1
  • 53
    • 84881315383 scopus 로고    scopus 로고
    • Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering
    • 10.1007/s00339-013-7607-5
    • Yang P et al (2013) Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering. Appl Phys A 112(3):759-765
    • (2013) Appl Phys A , vol.112 , Issue.3 , pp. 759-765
    • Yang, P.1
  • 54
    • 33847407147 scopus 로고    scopus 로고
    • Stability and thermal conductivity characteristics of nanofluids
    • 10.1016/j.tca.2006.11.036
    • Hwang Y et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1):70-74
    • (2007) Thermochim Acta , vol.455 , Issue.1 , pp. 70-74
    • Hwang, Y.1
  • 55
    • 8644220606 scopus 로고    scopus 로고
    • Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)
    • 10.2514/1.9934
    • Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transfer 18(4):481-485
    • (2004) J Thermophys Heat Transfer , vol.18 , Issue.4 , pp. 481-485
    • Wen, D.1    Ding, Y.2
  • 56
    • 32544455326 scopus 로고    scopus 로고
    • Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes
    • 10.1007/s11837-005-0180-4
    • Marquis F, Chibante L (2005) Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM 57(12):32-43
    • (2005) JOM , vol.57 , Issue.12 , pp. 32-43
    • Marquis, F.1    Chibante, L.2
  • 57
    • 47249104612 scopus 로고    scopus 로고
    • The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)
    • 10.1088/0957-4484/19/31/315701
    • Amrollahi A, Hamidi A, Rashidi A (2008) The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19(31):315701
    • (2008) Nanotechnology , vol.19 , Issue.31 , pp. 315701
    • Amrollahi, A.1    Hamidi, A.2    Rashidi, A.3
  • 58
    • 84877082796 scopus 로고    scopus 로고
    • Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure
    • 10.1039/c3dt32981j
    • Wang B, Hao J, Li H (2013) Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure. Dalton Trans 42(16):5866-5873
    • (2013) Dalton Trans , vol.42 , Issue.16 , pp. 5866-5873
    • Wang, B.1    Hao, J.2    Li, H.3
  • 59
    • 80655141580 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of nanofluids containing graphene nanosheets
    • Sen Gupta S et al. (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110(8):084302-084302-6.
    • (2011) J Appl Phys , vol.110 , Issue.8 , pp. 084302-0843026
    • Sen Gupta, S.1
  • 60
    • 84870519843 scopus 로고    scopus 로고
    • Electrical conductivity of ceramic and metallic nanofluids
    • 10.1016/j.colsurfa.2012.10.010
    • Sarojini KGK et al (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39-46
    • (2013) Colloids Surf A , vol.417 , pp. 39-46
    • Sarojini, K.G.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.