메뉴 건너뛰기




Volumn 3, Issue , 2014, Pages 214-223

Prediction of road accident severity using the ordered probit model

Author keywords

injury severity; motor vehicle occupants; ordered probit model; road accident modelling; Road safety

Indexed keywords


EID: 84959332280     PISSN: 23521457     EISSN: 23521465     Source Type: Conference Proceeding    
DOI: 10.1016/j.trpro.2014.10.107     Document Type: Conference Paper
Times cited : (84)

References (27)
  • 1
    • 0345867100 scopus 로고    scopus 로고
    • Analysis of driver injury severity levels at multiple locations using ordered probit models
    • M. Abdel-Aty Analysis of driver injury severity levels at multiple locations using ordered probit models Journal of Safety Research 34 2003 597 603
    • (2003) Journal of Safety Research , vol.34 , pp. 597-603
    • Abdel-Aty, M.1
  • 5
    • 0036826987 scopus 로고    scopus 로고
    • The independent contribution of driver, crash, and vehicle characteristics to driver fatalities
    • M. Bédard, G.H. Guyatt, M.J. Stones, and J.P. Hirdes The independent contribution of driver, crash, and vehicle characteristics to driver fatalities Accident Analysis and Prevention 34 2002 717 727
    • (2002) Accident Analysis and Prevention , vol.34 , pp. 717-727
    • Bédard, M.1    Guyatt, G.H.2    Stones, M.J.3    Hirdes, J.P.4
  • 7
  • 8
    • 63849283178 scopus 로고    scopus 로고
    • Urban arterial crash characteristics related with proximity to intersections and injury severity
    • A. Das, A. Pande, M. Abdel-Aty, and J. Santos Urban arterial crash characteristics related with proximity to intersections and injury severity Transportation Research Record 2083 2008 137 144
    • (2008) Transportation Research Record , vol.2083 , pp. 137-144
    • Das, A.1    Pande, A.2    Abdel-Aty, M.3    Santos, J.4
  • 9
    • 33644889643 scopus 로고    scopus 로고
    • Identifying significant predictors of injury severity in traffic accidents using a series of artiicial neural networks
    • D. Delen, R. Sharda, and M. Bessonov Identifying significant predictors of injury severity in traffic accidents using a series of artiicial neural networks Accident Analysis and Prevention 38 3 2006 434 444
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.3 , pp. 434-444
    • Delen, D.1    Sharda, R.2    Bessonov, M.3
  • 10
    • 0032157564 scopus 로고    scopus 로고
    • Applying the ordered probit model to injury severity in truck-passenger car rear-end collisions
    • C.S. Duncan, A.J. Khattak, and F.M. Council Applying the ordered probit model to injury severity in truck-passenger car rear-end collisions Transportation Research Record 1635 1998 63 71
    • (1998) Transportation Research Record , vol.1635 , pp. 63-71
    • Duncan, C.S.1    Khattak, A.J.2    Council, F.M.3
  • 11
    • 42749083943 scopus 로고    scopus 로고
    • A mixed generalized response model for examining pedestrian and bicyclist injury severity level in trafic crashes
    • N. Eluru, C.R. Bhat, and D.A. Hensher A mixed generalized response model for examining pedestrian and bicyclist injury severity level in trafic crashes Accident Analysis and Prevention 40 3 2008 1033 1054
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.3 , pp. 1033-1054
    • Eluru, N.1    Bhat, C.R.2    Hensher, D.A.3
  • 13
    • 84959389288 scopus 로고    scopus 로고
    • Road safety trends, statistics and challenges in the EU 2011-2012
    • European Commission (EC). (2013). Road safety trends, statistics and challenges in the EU 2011-2012. Road Safety Vademecum.
    • (2013) Road Safety Vademecum
  • 14
    • 55749083857 scopus 로고    scopus 로고
    • Injury severity analysis of accidents involving young male drivers in Great Britain
    • R.C. Gray, M.A. Quddus, and A. Evans Injury severity analysis of accidents involving young male drivers in Great Britain Journal of Safety Research 39 2008 483 495
    • (2008) Journal of Safety Research , vol.39 , pp. 483-495
    • Gray, R.C.1    Quddus, M.A.2    Evans, A.3
  • 15
    • 84959389289 scopus 로고    scopus 로고
    • LIMDEP User's Manual: Version 9.0. Econometric software
    • W.H. Greene LIMDEP User's Manual: Version 9.0. Econometric software Plainview, NY 2007
    • (2007) Plainview, NY
    • Greene, W.H.1
  • 17
    • 0036558120 scopus 로고    scopus 로고
    • Driver injury severity: An application of ordered probit models
    • K.M. Kockelman, and Y.-J. Kweon Driver injury severity: an application of ordered probit models Accident Analysis and Prevention 34 2002 313 321
    • (2002) Accident Analysis and Prevention , vol.34 , pp. 313-321
    • Kockelman, K.M.1    Kweon, Y.-J.2
  • 18
    • 78649930468 scopus 로고    scopus 로고
    • Identification and validation of a logistic regression model for predicting serious injuries associated with motorvehicle crashes
    • D.W. Kononen, C.A.C. Flannagan, and S.C. Wang Identification and validation of a logistic regression model for predicting serious injuries associated with motorvehicle crashes Accident Analysis and Prevention 43 1 2011 112 122
    • (2011) Accident Analysis and Prevention , vol.43 , Issue.1 , pp. 112-122
    • Kononen, D.W.1    Flannagan, C.A.C.2    Wang, S.C.3
  • 19
    • 0034282783 scopus 로고    scopus 로고
    • Combining non-parametric models with logistic regression: An application to motor vehicle injury data
    • P.M. Kuhnert, K.-A. Do, and R. McClure Combining non-parametric models with logistic regression: an application to motor vehicle injury data Computational Statistics and Data Analysis 34 3. 2000 371 386
    • (2000) Computational Statistics and Data Analysis , vol.34 , Issue.3 , pp. 371-386
    • Kuhnert, P.M.1    Do, K.-A.2    McClure, R.3
  • 21
    • 84947884121 scopus 로고
    • A statistical model for the analysis of ordinal level dependent variables
    • R.D. McKelvey, and W. Zavoina A statistical model for the analysis of ordinal level dependent variables Journal of Mathematical Sociology 4 1975 103 120
    • (1975) Journal of Mathematical Sociology , vol.4 , pp. 103-120
    • McKelvey, R.D.1    Zavoina, W.2
  • 22
    • 0030281607 scopus 로고    scopus 로고
    • Predicting the severity using models of ordered multiple choice
    • C.J. O'Donnell, and D.H. Connor Predicting the severity using models of ordered multiple choice Accident Analysis and Prevention 28 6 1996 739 753
    • (1996) Accident Analysis and Prevention , vol.28 , Issue.6 , pp. 739-753
    • O'Donnell, C.J.1    Connor, D.H.2
  • 23
    • 49349107517 scopus 로고    scopus 로고
    • Modelling motorcyclist injury severity by various crash types at T-junctions in the UK
    • C.-W. Pai, and W. Saleh Modelling motorcyclist injury severity by various crash types at T-junctions in the UK Safety Science 46 2008 1234 1247
    • (2008) Safety Science , vol.46 , pp. 1234-1247
    • Pai, C.-W.1    Saleh, W.2
  • 24
    • 79958186110 scopus 로고    scopus 로고
    • The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives
    • P. Savolainen, F. Mannering, D. Lord, and M. Quddus The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives Accident Analysis and Prevention 43 5 2011 1666 1676
    • (2011) Accident Analysis and Prevention , vol.43 , Issue.5 , pp. 1666-1676
    • Savolainen, P.1    Mannering, F.2    Lord, D.3    Quddus, M.4
  • 25
    • 84959389290 scopus 로고    scopus 로고
    • Effect of vehicle characteristics on safety, fuel use and emissions
    • (PhD dissertation)
    • G. Torrão Effect of vehicle characteristics on safety, fuel use and emissions University of Aveiro, Portugal 2013 (PhD dissertation)
    • (2013) University of Aveiro, Portugal
    • Torrão, G.1
  • 26
    • 84893479869 scopus 로고    scopus 로고
    • Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models
    • F. Ye, and D. Lord Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models Analytical Methods in Accident Research 1 2014 72 85
    • (2014) Analytical Methods in Accident Research , vol.1 , pp. 72-85
    • Ye, F.1    Lord, D.2
  • 27
    • 84959324902 scopus 로고    scopus 로고
    • Statistical and Econometric Methods for Transportation Data Analysis. Requirements: Multinomial logit, ordered probit and mixed logit models
    • S.P. Washington, M.G. Karlafatis, and F.L. Mannering Statistical and Econometric Methods for Transportation Data Analysis. requirements: Multinomial logit, ordered probit and mixed logit models Analytical Methods in Accident Research 1 2003 72 85
    • (2003) Analytical Methods in Accident Research , vol.1 , pp. 72-85
    • Washington, S.P.1    Karlafatis, M.G.2    Mannering, F.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.