-
1
-
-
33745239258
-
Approaches to microRNA discovery
-
May
-
E. Berezikov, E. Cuppen, R. H. A. Plasterk, Approaches to microRNA discovery," Nature Genet., vol. 38, pp. S2-S7, May 2006.
-
(2006)
Nature Genet.
, vol.38
, pp. S2-S7
-
-
Berezikov, E.1
Cuppen, E.2
Plasterk, R.H.A.3
-
2
-
-
77953358008
-
Development of the human cancer microRNA network
-
S. Bandyopadhyay, R. Mitra, U. Maulik, M. Q. Zhang, Development of the human cancer microRNA network," BMC Silence, vol. 1, no. 1, p. 6, 2010.
-
(2010)
BMC Silence
, vol.1
, Issue.6
, pp. 1
-
-
Bandyopadhyay, S.1
Mitra, R.2
Maulik, U.3
Zhang, M.Q.4
-
3
-
-
36448965202
-
An improved algorithm for clustering gene expression data
-
S. Bandyopadhyay, A. Mukhopadhyay, U. Maulik, An improved algorithm for clustering gene expression data," Bioinformatics, vol. 23, no. 21, pp. 2859-2865, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.21
, pp. 2859-2865
-
-
Bandyopadhyay, S.1
Mukhopadhyay, A.2
Maulik, U.3
-
4
-
-
62949240361
-
Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes
-
U. Maulik, A. Mukhopadhyay, S. Bandyopadhyay, Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes," BMC Bioinformat., vol. 10, no. 1, p. 27, 2009.
-
(2009)
BMC Bioinformat.
, vol.10
, Issue.27
, pp. 1
-
-
Maulik, U.1
Mukhopadhyay, A.2
Bandyopadhyay, S.3
-
5
-
-
78649720287
-
Multi-class clustering of cancer subtypes through SVM based ensemble of Pareto-optimal solutions for gene marker identi-cation
-
A. Mukhopadhyay, S. Bandyopadhyay, U. Maulik, Multi-class clustering of cancer subtypes through SVM based ensemble of Pareto-optimal solutions for gene marker identi-cation," PLoS ONE, vol. 5, no. 11, p. e13803, 2010.
-
(2010)
PLoS ONE
, vol.5
, Issue.11
, pp. e13803
-
-
Mukhopadhyay, A.1
Bandyopadhyay, S.2
Maulik, U.3
-
6
-
-
73449097843
-
Simulated annealing based automatic fuzzy clustering combined with ANN classi-cation for analyzing microarray data
-
Aug.
-
U. Maulik and A. Mukhopadhyay, Simulated annealing based automatic fuzzy clustering combined with ANN classi-cation for analyzing microarray data," Comput. Oper. Res., vol. 37, no. 8, pp. 1369-1380, Aug. 2010.
-
(2010)
Comput. Oper. Res.
, vol.37
, Issue.8
, pp. 1369-1380
-
-
Maulik, U.1
Mukhopadhyay, A.2
-
7
-
-
67649403094
-
Towards improving fuzzy clustering using support vector machine: Application to gene expression data
-
Nov.
-
A. Mukhopadhyay and U. Maulik, Towards improving fuzzy clustering using support vector machine: Application to gene expression data," Pat-tern Recognit., vol. 42, no. 11, pp. 2744-2763, Nov. 2009.
-
(2009)
Pat-tern Recognit.
, vol.42
, Issue.11
, pp. 2744-2763
-
-
Mukhopadhyay, A.1
Maulik, U.2
-
8
-
-
79956070450
-
Analysis of gene microarray data in a soft computing framework
-
Sep.
-
U. Maulik, Analysis of gene microarray data in a soft computing framework," Appl. Soft Comput., vol. 11, no. 6, pp. 4152-4160, Sep. 2011.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.6
, pp. 4152-4160
-
-
Maulik, U.1
-
11
-
-
78449295269
-
Improving the computational ef-ciency of recursive cluster elimination for gene selection
-
Jan./Feb.
-
L.-K. Luo, D.-F. Huang, L.-J. Ye, Q.-F. Zhou, G.-F. Shao, H. Peng, Improving the computational ef-ciency of recursive cluster elimination for gene selection," IEEE Trans. Comput. Biol. Bioinformat., vol. 8, no. 1, pp. 122-129, Jan./Feb. 2011.
-
(2011)
IEEE Trans. Comput. Biol. Bioinformat.
, vol.8
, Issue.1
, pp. 122-129
-
-
Luo, L.-K.1
Huang, D.-F.2
Ye, L.-J.3
Zhou, Q.-F.4
Shao, G.-F.5
Peng, H.6
-
12
-
-
0003668558
-
-
Univ. Washington, Seattle, WA, USA, Tech. Rep. UW-CSE-2000-08-01
-
A. Keller, M. Schummer, L. Hood,W. Ruzzo, Bayesian classi-cation of DNA array expression data," Univ. Washington, Seattle, WA, USA, Tech. Rep. UW-CSE-2000-08-01, 2000.
-
(2000)
Bayesian Classi-cation of DNA Array Expression Data
-
-
Keller, A.1
Schummer, M.2
Hoodw. Ruzzo, L.3
-
13
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, D. Peer, Using Bayesian networks to analyze expression data," J. Comput. Biol., vol. 7, nos. 3-4, pp. 601-620, 2000.
-
(2000)
J. Comput. Biol.
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Peer, D.4
-
14
-
-
0141571498
-
Naive Bayesian classi-er for microarray data
-
Jul.
-
A. Kelemen, H. Zhou, P. Lawhead, Y. Liang, Naive Bayesian classi-er for microarray data," in Proc. IEEE Int. Conf. Neural Netw., vol. 3. Jul. 2003, pp. 1769-1773.
-
(2003)
Proc. IEEE Int. Conf. Neural Netw.
, vol.3
, pp. 1769-1773
-
-
Kelemen, A.1
Zhou, H.2
Lawhead, P.3
Liang, Y.4
-
15
-
-
33846011470
-
A-ve-gene signature and clinical outcome in nonsmall-cell lung cancer
-
11-20 Jan.
-
H.-Y. Chen et al., A-ve-gene signature and clinical outcome in nonsmall-cell lung cancer," New England J. Med., vol. 356, no. 1, pp. 11-20, Jan. 2007.
-
(2007)
New England J. Med.
, vol.356
, Issue.1
-
-
Chen, H.-Y.1
-
16
-
-
10244252786
-
Systematic benchmarking of microarray data classi-cation: Assessing the role of nonlinearity and dimensionality reduction
-
Jul.
-
N. Pochet, F. D. Smet, J. A. K. Suykens, B. L. R. D. Moor, Systematic benchmarking of microarray data classi-cation: Assessing the role of nonlinearity and dimensionality reduction," Bioinformatics, vol. 20, no. 17, pp. 3185-3195, Jul. 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3185-3195
-
-
Pochet, N.1
Smet, F.D.2
Suykens, J.A.K.3
Moor, B.L.R.D.4
-
17
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
S. Ramaswamy et al., Multiclass cancer diagnosis using tumor gene expression signatures," Proc. Nat. Acad. Sci., vol. 98, no. 26, pp. 15149-15154, 2001.
-
(2001)
Proc. Nat. Acad. Sci.
, vol.98
, Issue.26
, pp. 15149-15154
-
-
Ramaswamy, S.1
-
18
-
-
33644955251
-
Instance-based concept learning from multiclass DNA microarray data
-
D. Berrar, I. Bradbury,W. Dubitzky, Instance-based concept learning from multiclass DNA microarray data," BMC Bioinformat., vol. 7, no. 1, p. 73, 2006.
-
(2006)
BMC Bioinformat.
, vol.7
, Issue.73
, pp. 1
-
-
Berrar, D.1
Bradbury, I.2
Dubitzky, W.3
-
19
-
-
50349094446
-
Identi-cation of genes differentially expressed in benign versus malignant thyroid tumors
-
N. B. Prasad et al., Identi-cation of genes differentially expressed in benign versus malignant thyroid tumors," Clin. Cancer Res., Off. J. Amer. Assoc. Cancer Res., vol. 14, no. 11, pp. 3327-3337, 2008.
-
(2008)
Clin. Cancer Res., Off. J. Amer. Assoc. Cancer Res.
, vol.14
, Issue.11
, pp. 3327-3337
-
-
Prasad, N.B.1
-
20
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
Jan.
-
O. Chapelle, V. Sindhwani, S. S. Keerthi, Optimization techniques for semi-supervised support vector machines," J. Mach. Learn. Res., vol. 9, pp. 203-233, Jan. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
21
-
-
35748972060
-
Semi-supervised learning for peptide identi-cation from shotgun proteomics datasets
-
Oct.
-
L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, M. J. MacCoss, Semi-supervised learning for peptide identi-cation from shotgun proteomics datasets," Nature Methods, vol. 4, pp. 923-925, Oct. 2007.
-
(2007)
Nature Methods
, vol.4
, pp. 923-925
-
-
Käll, L.1
Canterbury, J.D.2
Weston, J.3
Noble, W.S.4
MacCoss, M.J.5
-
22
-
-
25144481906
-
Semisupervised protein classi-cation using cluster kernels
-
J.Weston, E. Ie, D. Zhou, A. Elisseeff,W. S. Noble, C. Leslie, Semisupervised protein classi-cation using cluster kernels," Bioinformatics, vol. 21, no. 15, pp. 3241-3247, 2008.
-
(2008)
Bioinformatics
, vol.21
, Issue.15
, pp. 3241-3247
-
-
Weston, J.1
Ie, E.2
Zhou, D.3
Elisseeff, A.4
Noble, W.S.5
Leslie, C.6
-
23
-
-
41849115550
-
A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
-
Mar.
-
J. Ernst, Q. K. Beg, K. A. Kay, G. Balázsi, Z. N. Oltvai, Z. Bar-Joseph, A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli," PLoS Comput. Biol., vol. 4, p. e1000044, Mar. 2008.
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e1000044
-
-
Ernst, J.1
Beg, Q.K.2
Kay, K.A.3
Balázsi, G.4
Oltvai, Z.N.5
Bar-Joseph, Z.6
-
24
-
-
84875516745
-
Gene-expressionbased cancer subtypes prediction through feature selection and transductive SVM
-
Apr.
-
U. Maulik, A. Mukhopadhyay, D. Chakraborty, Gene-expressionbased cancer subtypes prediction through feature selection and transductive SVM," IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1111-1117, Apr. 2013.
-
(2013)
IEEE Trans. Biomed. Eng.
, vol.60
, Issue.4
, pp. 1111-1117
-
-
Maulik, U.1
Mukhopadhyay, A.2
Chakraborty, D.3
-
25
-
-
84902009869
-
Fuzzy preference based feature selection and semisupervised SVM for cancer classi-cation
-
Jun.
-
U. Maulik and D. Chakraborty, Fuzzy preference based feature selection and semisupervised SVM for cancer classi-cation," IEEE Trans. Nanobiosci., vol. 13, no. 2, pp. 152-160, Jun. 2014.
-
(2014)
IEEE Trans. Nanobiosci.
, vol.13
, Issue.2
, pp. 152-160
-
-
Maulik, U.1
Chakraborty, D.2
-
26
-
-
77957799227
-
Semi-supervised recursively partitioned mixture models for identifying cancer subtypes
-
D. C. Koestler et al., Semi-supervised recursively partitioned mixture models for identifying cancer subtypes," Bioinformatics, vol. 26, no. 20, pp. 2578-2585, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.20
, pp. 2578-2585
-
-
Koestler, D.C.1
-
27
-
-
49549087973
-
Clinically driven semi-supervised class discovery in gene expression data
-
I. Steinfeld, R. Navon, D. Ardigò, I. Zavaroni, Z. Yakhini, Clinically driven semi-supervised class discovery in gene expression data," Bioinfor-matics, vol. 24, no. 16, pp. 190-197, 2008.
-
(2008)
Bioinfor-matics
, vol.24
, Issue.16
, pp. 190-197
-
-
Steinfeld, I.1
Navon, R.2
Ardigò, D.3
Zavaroni, I.4
Yakhini, Z.5
-
28
-
-
84922908140
-
Semi-supervised methods to predict patient survival from gene expression data
-
E. Bair and R. Tibshirani, Semi-supervised methods to predict patient survival from gene expression data," PLoS Biol., vol. 2, pp. 511-522.
-
PLoS Biol
, vol.2
, pp. 511-522
-
-
Bair, E.1
Tibshirani, R.2
-
29
-
-
84859198391
-
Gene classi-cation using parameter-free semisupervised manifold learning
-
May/Jun.
-
H. Huang and H. Feng, Gene classi-cation using parameter-free semisupervised manifold learning," IEEE Trans. Comput. Biol. Bioinformat., vol. 9, no. 3, pp. 818-827, May/Jun. 2012.
-
(2012)
IEEE Trans. Comput. Biol. Bioinformat.
, vol.9
, Issue.3
, pp. 818-827
-
-
Huang, H.1
Feng, H.2
-
30
-
-
84878298642
-
Multiclass gene selection using Paretofronts
-
Jan./Feb.
-
J. C. Rajapakse and P. A. Mundra, Multiclass gene selection using Paretofronts," IEEE Trans. Comput. Biol. Bioinformat., vol. 10, no. 1, pp. 87-97, Jan./Feb. 2013.
-
(2013)
IEEE Trans. Comput. Biol. Bioinformat.
, vol.10
, Issue.1
, pp. 87-97
-
-
Rajapakse, J.C.1
Mundra, P.A.2
-
31
-
-
80053240887
-
Kernelized fuzzy rough sets and their applications
-
Nov.
-
Q. Hu, D. Yu, W. Pedrycz, D. Chen, Kernelized fuzzy rough sets and their applications," IEEE Trans. Knowl. Data Eng., vol. 23, no. 11, pp. 1649-1667, Nov. 2011.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, Issue.11
, pp. 1649-1667
-
-
Hu, Q.1
Yu, D.2
Pedrycz, W.3
Chen, D.4
-
32
-
-
84959273304
-
-
[Online]. Available:
-
Q. Hu, L. Zhang, D. Chen, W. Pedrycz, D. Yu. Gaussian Kernel Based Fuzzy Rough Sets: Model, Uncertainty Measures and Applications. [Online]. Available: http://www4.comp.polyu.edu.hk/
-
Gaussian Kernel Based Fuzzy Rough Sets: Model Uncertainty Measures and Applications
-
-
Hu, Q.1
Zhang, L.2
Chen, D.3
Pedrycz, W.4
Yu, D.5
-
33
-
-
77549087084
-
Fuzzy preference based rough sets
-
Q. Hu, D. Yu, M. Guo, Fuzzy preference based rough sets," Inf. Sci., vol. 180, no. 10, pp. 2003-2022, 2010.
-
(2010)
Inf. Sci.
, vol.180
, Issue.10
, pp. 2003-2022
-
-
Hu, Q.1
Yu, D.2
Guo, M.3
-
34
-
-
0242302657
-
Consistency-based search in feature selection
-
Dec.
-
M. Dash and H. Liu, Consistency-based search in feature selection," Artif. Intell., vol. 151, nos. 1-2, pp. 155-176, Dec. 2003.
-
(2003)
Artif. Intell.
, vol.151
, Issue.1-2
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
37
-
-
0004255908
-
-
New York, NY USA: McGraw-Hill
-
T. M. Mitchel, Machine Learning. New York, NY, USA: McGraw-Hill, 1997.
-
(1997)
Machine Learning
-
-
Mitchel, T.M.1
-
39
-
-
0033569406
-
Molecular classi-cation of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub et al., Molecular classi-cation of cancer: Class discovery and class prediction by gene expression monitoring," Science, vol. 286, no. 5439, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
-
40
-
-
24344458137
-
Feature Selection Based on Mutual Information Criteria of Max-dependency, Max-relevance, Min-redundancy
-
Aug.
-
H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
43
-
-
0029503525
-
Chi2: Feature selection and discretization of numeric attributes
-
Nov.
-
H. Liu and R. Setiono, Chi2: Feature selection and discretization of numeric attributes," in Proc. 7th Int. Conf. Tools Artif. Intell., Herndon, VA, USA, Nov. 1995, pp. 388-391.
-
(1995)
Proc. 7th Int. Conf. Tools Artif. Intell. Herndon VA USA
, pp. 388-391
-
-
Liu, H.1
Setiono, R.2
-
44
-
-
84959291224
-
-
[Online]. Available:
-
[Online]. Available: http://www.biolab.si/supp/bi-cancer/projections/
-
-
-
-
45
-
-
20444460289
-
MicroRNA expression pro-les classify human cancers
-
Jun.
-
J. Lu et al., MicroRNA expression pro-les classify human cancers, Nature, vol. 435, no. 7043, pp. 834-838, Jun. 2005.
-
(2005)
Nature
, vol.435
, Issue.7043
, pp. 834-838
-
-
Lu, J.1
-
48
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Jul.
-
A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognit., vol. 30, no. 7, pp. 1145-1159, Jul. 1997.
-
(1997)
Pattern Recognit
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
|