메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages

Identifying Cancer Biomarkers from Microarray Data Using Feature Selection and Semisupervised Learning

Author keywords

Cancer biomarkers; feature selection; kernelized fuzzy rough set; microarray data; semisupervised SVM; successive filtering

Indexed keywords

BIOMARKERS; DIAGNOSIS; DISEASES; FEATURE EXTRACTION; HISTOLOGY; MICROARRAYS; RNA; ROUGH SET THEORY; SUPPORT VECTOR MACHINES; TISSUE;

EID: 84959288173     PISSN: None     EISSN: 21682372     Source Type: Journal    
DOI: 10.1109/JTEHM.2014.2375820     Document Type: Article
Times cited : (37)

References (48)
  • 2
    • 77953358008 scopus 로고    scopus 로고
    • Development of the human cancer microRNA network
    • S. Bandyopadhyay, R. Mitra, U. Maulik, M. Q. Zhang, Development of the human cancer microRNA network," BMC Silence, vol. 1, no. 1, p. 6, 2010.
    • (2010) BMC Silence , vol.1 , Issue.6 , pp. 1
    • Bandyopadhyay, S.1    Mitra, R.2    Maulik, U.3    Zhang, M.Q.4
  • 3
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • S. Bandyopadhyay, A. Mukhopadhyay, U. Maulik, An improved algorithm for clustering gene expression data," Bioinformatics, vol. 23, no. 21, pp. 2859-2865, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 4
    • 62949240361 scopus 로고    scopus 로고
    • Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes
    • U. Maulik, A. Mukhopadhyay, S. Bandyopadhyay, Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes," BMC Bioinformat., vol. 10, no. 1, p. 27, 2009.
    • (2009) BMC Bioinformat. , vol.10 , Issue.27 , pp. 1
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 5
    • 78649720287 scopus 로고    scopus 로고
    • Multi-class clustering of cancer subtypes through SVM based ensemble of Pareto-optimal solutions for gene marker identi-cation
    • A. Mukhopadhyay, S. Bandyopadhyay, U. Maulik, Multi-class clustering of cancer subtypes through SVM based ensemble of Pareto-optimal solutions for gene marker identi-cation," PLoS ONE, vol. 5, no. 11, p. e13803, 2010.
    • (2010) PLoS ONE , vol.5 , Issue.11 , pp. e13803
    • Mukhopadhyay, A.1    Bandyopadhyay, S.2    Maulik, U.3
  • 6
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classi-cation for analyzing microarray data
    • Aug.
    • U. Maulik and A. Mukhopadhyay, Simulated annealing based automatic fuzzy clustering combined with ANN classi-cation for analyzing microarray data," Comput. Oper. Res., vol. 37, no. 8, pp. 1369-1380, Aug. 2010.
    • (2010) Comput. Oper. Res. , vol.37 , Issue.8 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 7
    • 67649403094 scopus 로고    scopus 로고
    • Towards improving fuzzy clustering using support vector machine: Application to gene expression data
    • Nov.
    • A. Mukhopadhyay and U. Maulik, Towards improving fuzzy clustering using support vector machine: Application to gene expression data," Pat-tern Recognit., vol. 42, no. 11, pp. 2744-2763, Nov. 2009.
    • (2009) Pat-tern Recognit. , vol.42 , Issue.11 , pp. 2744-2763
    • Mukhopadhyay, A.1    Maulik, U.2
  • 8
    • 79956070450 scopus 로고    scopus 로고
    • Analysis of gene microarray data in a soft computing framework
    • Sep.
    • U. Maulik, Analysis of gene microarray data in a soft computing framework," Appl. Soft Comput., vol. 11, no. 6, pp. 4152-4160, Sep. 2011.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.6 , pp. 4152-4160
    • Maulik, U.1
  • 11
    • 78449295269 scopus 로고    scopus 로고
    • Improving the computational ef-ciency of recursive cluster elimination for gene selection
    • Jan./Feb.
    • L.-K. Luo, D.-F. Huang, L.-J. Ye, Q.-F. Zhou, G.-F. Shao, H. Peng, Improving the computational ef-ciency of recursive cluster elimination for gene selection," IEEE Trans. Comput. Biol. Bioinformat., vol. 8, no. 1, pp. 122-129, Jan./Feb. 2011.
    • (2011) IEEE Trans. Comput. Biol. Bioinformat. , vol.8 , Issue.1 , pp. 122-129
    • Luo, L.-K.1    Huang, D.-F.2    Ye, L.-J.3    Zhou, Q.-F.4    Shao, G.-F.5    Peng, H.6
  • 13
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, D. Peer, Using Bayesian networks to analyze expression data," J. Comput. Biol., vol. 7, nos. 3-4, pp. 601-620, 2000.
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Peer, D.4
  • 15
    • 33846011470 scopus 로고    scopus 로고
    • A-ve-gene signature and clinical outcome in nonsmall-cell lung cancer
    • 11-20 Jan.
    • H.-Y. Chen et al., A-ve-gene signature and clinical outcome in nonsmall-cell lung cancer," New England J. Med., vol. 356, no. 1, pp. 11-20, Jan. 2007.
    • (2007) New England J. Med. , vol.356 , Issue.1
    • Chen, H.-Y.1
  • 16
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classi-cation: Assessing the role of nonlinearity and dimensionality reduction
    • Jul.
    • N. Pochet, F. D. Smet, J. A. K. Suykens, B. L. R. D. Moor, Systematic benchmarking of microarray data classi-cation: Assessing the role of nonlinearity and dimensionality reduction," Bioinformatics, vol. 20, no. 17, pp. 3185-3195, Jul. 2004.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    Smet, F.D.2    Suykens, J.A.K.3    Moor, B.L.R.D.4
  • 17
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • S. Ramaswamy et al., Multiclass cancer diagnosis using tumor gene expression signatures," Proc. Nat. Acad. Sci., vol. 98, no. 26, pp. 15149-15154, 2001.
    • (2001) Proc. Nat. Acad. Sci. , vol.98 , Issue.26 , pp. 15149-15154
    • Ramaswamy, S.1
  • 18
    • 33644955251 scopus 로고    scopus 로고
    • Instance-based concept learning from multiclass DNA microarray data
    • D. Berrar, I. Bradbury,W. Dubitzky, Instance-based concept learning from multiclass DNA microarray data," BMC Bioinformat., vol. 7, no. 1, p. 73, 2006.
    • (2006) BMC Bioinformat. , vol.7 , Issue.73 , pp. 1
    • Berrar, D.1    Bradbury, I.2    Dubitzky, W.3
  • 19
    • 50349094446 scopus 로고    scopus 로고
    • Identi-cation of genes differentially expressed in benign versus malignant thyroid tumors
    • N. B. Prasad et al., Identi-cation of genes differentially expressed in benign versus malignant thyroid tumors," Clin. Cancer Res., Off. J. Amer. Assoc. Cancer Res., vol. 14, no. 11, pp. 3327-3337, 2008.
    • (2008) Clin. Cancer Res., Off. J. Amer. Assoc. Cancer Res. , vol.14 , Issue.11 , pp. 3327-3337
    • Prasad, N.B.1
  • 20
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Jan.
    • O. Chapelle, V. Sindhwani, S. S. Keerthi, Optimization techniques for semi-supervised support vector machines," J. Mach. Learn. Res., vol. 9, pp. 203-233, Jan. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 21
    • 35748972060 scopus 로고    scopus 로고
    • Semi-supervised learning for peptide identi-cation from shotgun proteomics datasets
    • Oct.
    • L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, M. J. MacCoss, Semi-supervised learning for peptide identi-cation from shotgun proteomics datasets," Nature Methods, vol. 4, pp. 923-925, Oct. 2007.
    • (2007) Nature Methods , vol.4 , pp. 923-925
    • Käll, L.1    Canterbury, J.D.2    Weston, J.3    Noble, W.S.4    MacCoss, M.J.5
  • 22
    • 25144481906 scopus 로고    scopus 로고
    • Semisupervised protein classi-cation using cluster kernels
    • J.Weston, E. Ie, D. Zhou, A. Elisseeff,W. S. Noble, C. Leslie, Semisupervised protein classi-cation using cluster kernels," Bioinformatics, vol. 21, no. 15, pp. 3241-3247, 2008.
    • (2008) Bioinformatics , vol.21 , Issue.15 , pp. 3241-3247
    • Weston, J.1    Ie, E.2    Zhou, D.3    Elisseeff, A.4    Noble, W.S.5    Leslie, C.6
  • 23
    • 41849115550 scopus 로고    scopus 로고
    • A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
    • Mar.
    • J. Ernst, Q. K. Beg, K. A. Kay, G. Balázsi, Z. N. Oltvai, Z. Bar-Joseph, A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli," PLoS Comput. Biol., vol. 4, p. e1000044, Mar. 2008.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000044
    • Ernst, J.1    Beg, Q.K.2    Kay, K.A.3    Balázsi, G.4    Oltvai, Z.N.5    Bar-Joseph, Z.6
  • 24
    • 84875516745 scopus 로고    scopus 로고
    • Gene-expressionbased cancer subtypes prediction through feature selection and transductive SVM
    • Apr.
    • U. Maulik, A. Mukhopadhyay, D. Chakraborty, Gene-expressionbased cancer subtypes prediction through feature selection and transductive SVM," IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1111-1117, Apr. 2013.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , Issue.4 , pp. 1111-1117
    • Maulik, U.1    Mukhopadhyay, A.2    Chakraborty, D.3
  • 25
    • 84902009869 scopus 로고    scopus 로고
    • Fuzzy preference based feature selection and semisupervised SVM for cancer classi-cation
    • Jun.
    • U. Maulik and D. Chakraborty, Fuzzy preference based feature selection and semisupervised SVM for cancer classi-cation," IEEE Trans. Nanobiosci., vol. 13, no. 2, pp. 152-160, Jun. 2014.
    • (2014) IEEE Trans. Nanobiosci. , vol.13 , Issue.2 , pp. 152-160
    • Maulik, U.1    Chakraborty, D.2
  • 26
    • 77957799227 scopus 로고    scopus 로고
    • Semi-supervised recursively partitioned mixture models for identifying cancer subtypes
    • D. C. Koestler et al., Semi-supervised recursively partitioned mixture models for identifying cancer subtypes," Bioinformatics, vol. 26, no. 20, pp. 2578-2585, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.20 , pp. 2578-2585
    • Koestler, D.C.1
  • 27
    • 49549087973 scopus 로고    scopus 로고
    • Clinically driven semi-supervised class discovery in gene expression data
    • I. Steinfeld, R. Navon, D. Ardigò, I. Zavaroni, Z. Yakhini, Clinically driven semi-supervised class discovery in gene expression data," Bioinfor-matics, vol. 24, no. 16, pp. 190-197, 2008.
    • (2008) Bioinfor-matics , vol.24 , Issue.16 , pp. 190-197
    • Steinfeld, I.1    Navon, R.2    Ardigò, D.3    Zavaroni, I.4    Yakhini, Z.5
  • 28
    • 84922908140 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • E. Bair and R. Tibshirani, Semi-supervised methods to predict patient survival from gene expression data," PLoS Biol., vol. 2, pp. 511-522.
    • PLoS Biol , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 29
    • 84859198391 scopus 로고    scopus 로고
    • Gene classi-cation using parameter-free semisupervised manifold learning
    • May/Jun.
    • H. Huang and H. Feng, Gene classi-cation using parameter-free semisupervised manifold learning," IEEE Trans. Comput. Biol. Bioinformat., vol. 9, no. 3, pp. 818-827, May/Jun. 2012.
    • (2012) IEEE Trans. Comput. Biol. Bioinformat. , vol.9 , Issue.3 , pp. 818-827
    • Huang, H.1    Feng, H.2
  • 30
    • 84878298642 scopus 로고    scopus 로고
    • Multiclass gene selection using Paretofronts
    • Jan./Feb.
    • J. C. Rajapakse and P. A. Mundra, Multiclass gene selection using Paretofronts," IEEE Trans. Comput. Biol. Bioinformat., vol. 10, no. 1, pp. 87-97, Jan./Feb. 2013.
    • (2013) IEEE Trans. Comput. Biol. Bioinformat. , vol.10 , Issue.1 , pp. 87-97
    • Rajapakse, J.C.1    Mundra, P.A.2
  • 31
    • 80053240887 scopus 로고    scopus 로고
    • Kernelized fuzzy rough sets and their applications
    • Nov.
    • Q. Hu, D. Yu, W. Pedrycz, D. Chen, Kernelized fuzzy rough sets and their applications," IEEE Trans. Knowl. Data Eng., vol. 23, no. 11, pp. 1649-1667, Nov. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.11 , pp. 1649-1667
    • Hu, Q.1    Yu, D.2    Pedrycz, W.3    Chen, D.4
  • 33
    • 77549087084 scopus 로고    scopus 로고
    • Fuzzy preference based rough sets
    • Q. Hu, D. Yu, M. Guo, Fuzzy preference based rough sets," Inf. Sci., vol. 180, no. 10, pp. 2003-2022, 2010.
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2003-2022
    • Hu, Q.1    Yu, D.2    Guo, M.3
  • 34
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dec.
    • M. Dash and H. Liu, Consistency-based search in feature selection," Artif. Intell., vol. 151, nos. 1-2, pp. 155-176, Dec. 2003.
    • (2003) Artif. Intell. , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 37
  • 39
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classi-cation of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub et al., Molecular classi-cation of cancer: Class discovery and class prediction by gene expression monitoring," Science, vol. 286, no. 5439, pp. 531-537, 1999.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1
  • 40
    • 24344458137 scopus 로고    scopus 로고
    • Feature Selection Based on Mutual Information Criteria of Max-dependency, Max-relevance, Min-redundancy
    • Aug.
    • H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 44
    • 84959291224 scopus 로고    scopus 로고
    • [Online]. Available:
    • [Online]. Available: http://www.biolab.si/supp/bi-cancer/projections/
  • 45
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression pro-les classify human cancers
    • Jun.
    • J. Lu et al., MicroRNA expression pro-les classify human cancers, Nature, vol. 435, no. 7043, pp. 834-838, Jun. 2005.
    • (2005) Nature , vol.435 , Issue.7043 , pp. 834-838
    • Lu, J.1
  • 48
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Jul.
    • A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognit., vol. 30, no. 7, pp. 1145-1159, Jul. 1997.
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.