메뉴 건너뛰기




Volumn 7, Issue 9, 2015, Pages 2608-2622

Sequence analysis and characterization of active human alu subfamilies based on the 1000 genomes pilot project

Author keywords

Mobilome; Retrotransposon; Structural variation

Indexed keywords

ALU SEQUENCE; DNA SEQUENCE; GENE DELETION; GENETIC VARIATION; HUMAN; HUMAN GENOME; HUMAN GENOME PROJECT; MOLECULAR EVOLUTION;

EID: 84959276574     PISSN: None     EISSN: 17596653     Source Type: Journal    
DOI: 10.1093/gbe/evv167     Document Type: Article
Times cited : (63)

References (68)
  • 1
    • 84975742565 scopus 로고    scopus 로고
    • A map of human genome variation from population- scale sequencing
    • Abecasis GR, et al. 2010. A map of human genome variation from population- scale sequencing. Nature 467:1061-1073.
    • (2010) Nature , vol.467 , pp. 1061-1073
    • Abecasis, G.R.1
  • 2
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1, 092 human genomes
    • Abecasis GR, et al. 2012. An integrated map of genetic variation from 1, 092 human genomes. Nature 491:56-65.
    • (2012) Nature , vol.491 , pp. 56-65
    • Abecasis, G.R.1
  • 3
    • 84890116607 scopus 로고    scopus 로고
    • Alu elements: An intrinsic source of human genome instability
    • Ade C, Roy-Engel AM, Deininger PL. 2013. Alu elements: An intrinsic source of human genome instability. Curr Opin Virol. 3:639-645.
    • (2013) Curr Opin Virol. , vol.3 , pp. 639-645
    • Ade, C.1    Roy-Engel, A.M.2    Deininger, P.L.3
  • 4
    • 84887382601 scopus 로고    scopus 로고
    • Identification of three new Alu Yb subfamilies by source tracking of recently integrated Alu Yb elements
    • Ahmed M, Li W, Liang P. 2013. Identification of three new Alu Yb subfamilies by source tracking of recently integrated Alu Yb elements. Mob DNA. 4:25.
    • (2013) Mob DNA , vol.4 , pp. 25
    • Ahmed, M.1    Li, W.2    Liang, P.3
  • 5
    • 0036250811 scopus 로고    scopus 로고
    • Alu repeats and human genomic diversity
    • Batzer MA, Deininger PL. 2002. Alu repeats and human genomic diversity. Nat Rev Genet. 3:370-379.
    • (2002) Nat Rev Genet. , vol.3 , pp. 370-379
    • Batzer, M.A.1    Deininger, P.L.2
  • 6
    • 0025633325 scopus 로고
    • Structure and variability of recently inserted Alu family members
    • Batzer MA, et al. 1990. Structure and variability of recently inserted Alu family members. Nucleic Acids Res. 18:6793-6798.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 6793-6798
    • Batzer, M.A.1
  • 7
    • 0030052666 scopus 로고    scopus 로고
    • Standardized nomenclature for Alu repeats
    • Batzer MA, et al. 1996. Standardized nomenclature for Alu repeats. J Mol Evol. 42:3-6.
    • (1996) J Mol Evol. , vol.42 , pp. 3-6
    • Batzer, M.A.1
  • 8
    • 77953880842 scopus 로고    scopus 로고
    • LINE-1 retrotransposition activity in human genomes
    • Beck CR, et al. 2010. LINE-1 retrotransposition activity in human genomes. Cell 141:1159-1170.
    • (2010) Cell , vol.141 , pp. 1159-1170
    • Beck, C.R.1
  • 10
    • 57149120574 scopus 로고    scopus 로고
    • Active Alu retrotransposons in the human genome
    • Bennett EA, et al. 2008. Active Alu retrotransposons in the human genome. Genome Res. 18:1875-1883.
    • (2008) Genome Res. , vol.18 , pp. 1875-1883
    • Bennett, E.A.1
  • 11
    • 34247344319 scopus 로고    scopus 로고
    • Retrotransposable elements and human disease
    • Callinan PA, Batzer MA. 2006. Retrotransposable elements and human disease. Genome Dyn. 1:104-115.
    • (2006) Genome Dyn. , vol.1 , pp. 104-115
    • Callinan, P.A.1    Batzer, M.A.2
  • 12
    • 0035800561 scopus 로고    scopus 로고
    • Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity
    • Carroll ML, et al. 2001. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol. 311:17-40.
    • (2001) J Mol Biol. , vol.311 , pp. 17-40
    • Carroll, M.L.1
  • 13
    • 63849260592 scopus 로고    scopus 로고
    • Diverse cis factors controlling Alu retrotransposition: What causes Alu elements to die?
    • Comeaux MS, Roy-Engel AM, Hedges DJ, Deininger PL. 2009. Diverse cis factors controlling Alu retrotransposition: What causes Alu elements to die? Genome Res. 19:545-555.
    • (2009) Genome Res. , vol.19 , pp. 545-555
    • Comeaux, M.S.1    Roy-Engel, A.M.2    Hedges, D.J.3    Deininger, P.L.4
  • 14
    • 84859763538 scopus 로고    scopus 로고
    • Alu pair exclusions in the human genome
    • Cook GW, et al. 2011. Alu pair exclusions in the human genome. Mob DNA. 2:10.
    • (2011) Mob DNA , vol.2 , pp. 10
    • Cook, G.W.1
  • 15
    • 70349318211 scopus 로고    scopus 로고
    • The impact of retrotransposons on human genome evolution
    • Cordaux R, Batzer MA. 2009. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 10:691-703.
    • (2009) Nat Rev Genet. , vol.10 , pp. 691-703
    • Cordaux, R.1    Batzer, M.A.2
  • 16
    • 4444358450 scopus 로고    scopus 로고
    • Retrotransposition of Alu elements: How many sources?
    • Cordaux R, Hedges DJ, Batzer MA. 2004. Retrotransposition of Alu elements: how many sources? Trends Genet 20:464-467.
    • (2004) Trends Genet , vol.20 , pp. 464-467
    • Cordaux, R.1    Hedges, D.J.2    Batzer, M.A.3
  • 17
    • 33646247399 scopus 로고    scopus 로고
    • Estimating the retrotransposition rate of human Alu elements
    • Cordaux R, Hedges DJ, Herke SW, Batzer MA. 2006. Estimating the retrotransposition rate of human Alu elements. Gene 373:134-137.
    • (2006) Gene , vol.373 , pp. 134-137
    • Cordaux, R.1    Hedges, D.J.2    Herke, S.W.3    Batzer, M.A.4
  • 20
    • 84855199454 scopus 로고    scopus 로고
    • Alu elements: Know the SINEs
    • Deininger P. 2011. Alu elements: know the SINEs. Genome Biol. 12:236.
    • (2011) Genome Biol. , vol.12 , pp. 236
    • Deininger, P.1
  • 23
    • 0041353551 scopus 로고    scopus 로고
    • LINE-mediated retrotransposition of marked Alu sequences
    • Dewannieux M, Esnault C, Heidmann T. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 35:41-48.
    • (2003) Nat Genet. , vol.35 , pp. 41-48
    • Dewannieux, M.1    Esnault, C.2    Heidmann, T.3
  • 24
    • 23244439083 scopus 로고    scopus 로고
    • Role of poly(A) tail length in Alu retrotransposition
    • Dewannieux M, Heidmann T. 2005. Role of poly(A) tail length in Alu retrotransposition. Genomics 86:378-381.
    • (2005) Genomics , vol.86 , pp. 378-381
    • Dewannieux, M.1    Heidmann, T.2
  • 25
    • 0009969062 scopus 로고    scopus 로고
    • Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition
    • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905-916.
    • (1996) Cell , vol.87 , pp. 905-916
    • Feng, Q.1    Moran, J.V.2    Kazazian, H.H.3    Boeke, J.D.4
  • 27
    • 0002051540 scopus 로고    scopus 로고
    • BioEdit: A user-friendly biological sequence alignment editor and analysis program forWindows 95/98/NT
    • Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program forWindows 95/98/NT. Nucleic Acids Symp Ser. 41:95-98.
    • (1999) Nucleic Acids Symp Ser. , vol.41 , pp. 95-98
    • Hall, T.A.1
  • 28
    • 19844382341 scopus 로고    scopus 로고
    • Under the genomic radar: The stealth model of Alu amplification
    • Han K, et al. 2005. Under the genomic radar: The stealth model of Alu amplification. Genome Res. 15:655-664.
    • (2005) Genome Res. , vol.15 , pp. 655-664
    • Han, K.1
  • 29
    • 35948983427 scopus 로고    scopus 로고
    • Alu recombination-mediated structural deletions in the chimpanzee genome
    • Han K, et al. 2007. Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet. 3:1939-1949.
    • (2007) PLoS Genet. , vol.3 , pp. 1939-1949
    • Han, K.1
  • 30
    • 84975806579 scopus 로고    scopus 로고
    • Alu repeat discovery and characterization within human genomes
    • Hormozdiari F, et al. 2011. Alu repeat discovery and characterization within human genomes. Genome Res. 21:840-849.
    • (2011) Genome Res. , vol.21 , pp. 840-849
    • Hormozdiari, F.1
  • 31
    • 0037693743 scopus 로고    scopus 로고
    • Potential for retroposition by old Alu subfamilies
    • Johanning K, et al. 2003. Potential for retroposition by old Alu subfamilies. J Mol Evol. 56:658-664.
    • (2003) J Mol Evol. , vol.56 , pp. 658-664
    • Johanning, K.1
  • 32
    • 0031055331 scopus 로고    scopus 로고
    • Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons
    • Jurka J. 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A. 94:1872-1877.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 1872-1877
    • Jurka, J.1
  • 33
    • 0034284437 scopus 로고    scopus 로고
    • Repbase update: A database and an electronic journal of repetitive elements
    • Jurka J. 2000. Repbase update: A database and an electronic journal of repetitive elements. Trends Genet. 16:418-420.
    • (2000) Trends Genet. , vol.16 , pp. 418-420
    • Jurka, J.1
  • 34
    • 23844525077 scopus 로고    scopus 로고
    • Repbase Update, a database of eukaryotic repetitive elements
    • Jurka J, et al. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110:462-467.
    • (2005) Cytogenet Genome Res. , vol.110 , pp. 462-467
    • Jurka, J.1
  • 36
    • 0036226603 scopus 로고    scopus 로고
    • BLAT-The BLAST-like alignment tool
    • Kent WJ. 2002. BLAT-the BLAST-like alignment tool. Genome Res. 12:656-664.
    • (2002) Genome Res. , vol.12 , pp. 656-664
    • Kent, W.J.1
  • 37
    • 0036079158 scopus 로고    scopus 로고
    • The human genome browser at UCSC
    • Kent WJ, et al. 2002. The human genome browser at UCSC. Genome Res. 12:996-1006.
    • (2002) Genome Res. , vol.12 , pp. 996-1006
    • Kent, W.J.1
  • 38
    • 77956858478 scopus 로고    scopus 로고
    • A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome
    • Konkel MK, Batzer MA. 2010. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol. 20:211-221.
    • (2010) Semin Cancer Biol. , vol.20 , pp. 211-221
    • Konkel, M.K.1    Batzer, M.A.2
  • 40
    • 0024558422 scopus 로고
    • Sequence conservation in Alu evolution
    • Labuda D, Striker G. 1989. Sequence conservation in Alu evolution. Nucleic Acids Res. 17:2477-2491.
    • (1989) Nucleic Acids Res. , vol.17 , pp. 2477-2491
    • Labuda, D.1    Striker, G.2
  • 41
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Lander ES, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.S.1
  • 42
    • 58149191245 scopus 로고    scopus 로고
    • Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons
    • Lee J, Han K, Meyer TJ, Kim HS, Batzer MA. 2008. Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons. PLoS One 3:e4047.
    • (2008) PLoS One , vol.3 , pp. e4047
    • Lee, J.1    Han, K.2    Meyer, T.J.3    Kim, H.S.4    Batzer, M.A.5
  • 43
    • 0027450385 scopus 로고
    • Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition
    • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 72:595-605.
    • (1993) Cell , vol.72 , pp. 595-605
    • Luan, D.D.1    Korman, M.H.2    Jakubczak, J.L.3    Eickbush, T.H.4
  • 44
    • 33947705203 scopus 로고    scopus 로고
    • Which transposable elements are active in the human genome?
    • Mills RE, Bennett EA, Iskow RC, Devine SE. 2007. Which transposable elements are active in the human genome? Trends Genet 23:183-191.
    • (2007) Trends Genet , vol.23 , pp. 183-191
    • Mills, R.E.1    Bennett, E.A.2    Iskow, R.C.3    Devine, S.E.4
  • 45
    • 33645464594 scopus 로고    scopus 로고
    • Recently mobilized transposons in the human and chimpanzee genomes
    • Mills RE, et al. 2006. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet. 78:671-679.
    • (2006) Am J Hum Genet. , vol.78 , pp. 671-679
    • Mills, R.E.1
  • 46
    • 84975804424 scopus 로고    scopus 로고
    • Mapping copy number variation by population-scale genome sequencing
    • Mills RE, et al. 2011. Mapping copy number variation by population-scale genome sequencing. Nature 470:59-65.
    • (2011) Nature , vol.470 , pp. 59-65
    • Mills, R.E.1
  • 47
    • 0030606320 scopus 로고    scopus 로고
    • High frequency retrotransposition in cultured mammalian cells
    • Moran JV, et al. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917-927.
    • (1996) Cell , vol.87 , pp. 917-927
    • Moran, J.V.1
  • 48
    • 0036613245 scopus 로고    scopus 로고
    • DNA repair mediated by endonuclease-independent LINE-1 retrotransposition
    • Morrish TA, et al. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet. 31:159-165.
    • (2002) Nat Genet. , vol.31 , pp. 159-165
    • Morrish, T.A.1
  • 49
    • 84864676886 scopus 로고    scopus 로고
    • Alu expression in human cell lines and their retrotranspositional potential
    • Oler AJ, et al. 2012. Alu expression in human cell lines and their retrotranspositional potential. Mob DNA. 3:11.
    • (2012) Mob DNA , vol.3 , pp. 11
    • Oler, A.J.1
  • 50
    • 8744242187 scopus 로고    scopus 로고
    • Whole-genome analysis of Alu repeat elements reveals complex evolutionary history
    • Price AL, Eskin E, Pevzner PA. 2004. Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res. 14:2245-2252.
    • (2004) Genome Res. , vol.14 , pp. 2245-2252
    • Price, A.L.1    Eskin, E.2    Pevzner, P.A.3
  • 51
    • 0033787169 scopus 로고    scopus 로고
    • Potential gene conversion and source genes for recently integrated Alu elements
    • Roy AM, et al. 2000. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 10:1485-1495.
    • (2000) Genome Res. , vol.10 , pp. 1485-1495
    • Roy, A.M.1
  • 52
    • 0034817362 scopus 로고    scopus 로고
    • Alu insertion polymorphisms for the study of human genomic diversity
    • Roy-Engel et al. 2001. Alu insertion polymorphisms for the study of human genomic diversity. Genetics 159:279-290.
    • (2001) Genetics , vol.159 , pp. 279-290
    • Roy-Engel1
  • 53
    • 0036737222 scopus 로고    scopus 로고
    • Active Alu element "A-tails": Size does matter
    • Roy-Engel AM, et al. 2002. Active Alu element "A-tails": size does matter. Genome Res. 12:1333-1344.
    • (2002) Genome Res. , vol.12 , pp. 1333-1344
    • Roy-Engel, A.M.1
  • 54
    • 0004222748 scopus 로고    scopus 로고
    • Code available at
    • Rozen S, Skaletsky HJ. 1998. Primer3. Code available at http://wwwgenome.wi.mit.edu/genome-software/other/primer3.html.
    • (1998) Primer3
    • Rozen, S.1    Skaletsky, H.J.2
  • 57
    • 0025008168 scopus 로고
    • Sequence logos: A new way to display consensus sequences
    • Schneider TD, Stephens RM. 1990. Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 18:6097-6100.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 6097-6100
    • Schneider, T.D.1    Stephens, R.M.2
  • 58
    • 33745244299 scopus 로고    scopus 로고
    • Human genomic deletions mediated by recombination between Alu elements
    • Sen SK, et al. 2006. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet. 79:41-53.
    • (2006) Am J Hum Genet. , vol.79 , pp. 41-53
    • Sen, S.K.1
  • 61
    • 80052318161 scopus 로고    scopus 로고
    • A comprehensive map of mobile element insertion polymorphisms in humans
    • Stewart C, et al. 2011. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 7:e1002236.
    • (2011) PLoS Genet. , vol.7 , pp. e1002236
    • Stewart, C.1
  • 63
    • 84866166604 scopus 로고    scopus 로고
    • Rescuing Alu: Recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion
    • Wagstaff BJ, et al. 2012. Rescuing Alu: Recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet. 8:e1002842.
    • (2012) PLoS Genet. , vol.8 , pp. e1002842
    • Wagstaff, B.J.1
  • 64
    • 31844449262 scopus 로고    scopus 로고
    • Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms
    • Wang J, et al. 2006. Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms. Gene 365:11-20.
    • (2006) Gene , vol.365 , pp. 11-20
    • Wang, J.1
  • 65
    • 0042044628 scopus 로고    scopus 로고
    • Comprehensive analysis of two Alu Yd subfamilies
    • Xing J, et al. 2003. Comprehensive analysis of two Alu Yd subfamilies. J Mol Evol. 57(Suppl 1):S76-S89.
    • (2003) J Mol Evol. , vol.57 , pp. S76-S89
    • Xing, J.1
  • 66
    • 7944232060 scopus 로고    scopus 로고
    • Alu element mutation spectra: Molecular clocks and the effect of DNA methylation
    • Xing J, et al. 2004. Alu element mutation spectra: molecular clocks and the effect of DNA methylation. J Mol Biol. 344:675-682.
    • (2004) J Mol Biol. , vol.344 , pp. 675-682
    • Xing, J.1
  • 67
    • 67649982842 scopus 로고    scopus 로고
    • Mobile elements create structural variation: Analysis of a complete human genome
    • Xing J, et al. 2009. Mobile elements create structural variation: Analysis of a complete human genome. Genome Res. 19:1516-1526.
    • (2009) Genome Res. , vol.19 , pp. 1516-1526
    • Xing, J.1
  • 68
    • 84876799103 scopus 로고    scopus 로고
    • Mobile element biology: New possibilities with high-throughput sequencing
    • Xing J, Witherspoon DJ, Jorde LB. 2013. Mobile element biology: new possibilities with high-throughput sequencing. Trends Genet. 29:280-289.
    • (2013) Trends Genet. , vol.29 , pp. 280-289
    • Xing, J.1    Witherspoon, D.J.2    Jorde, L.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.