메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 3323-3331

Interaction part mining: A mid-level approach for fine-grained action recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FILTRATION; GRAPHIC METHODS; IMAGE SEGMENTATION; OBJECT DETECTION;

EID: 84959241736     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298953     Document Type: Conference Paper
Times cited : (81)

References (39)
  • 2
    • 84911456915 scopus 로고    scopus 로고
    • Bing: Binarized normed gradients for objectness estimation at 300fps
    • M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. Bing: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014
    • (2014) CVPR
    • Cheng, M.-M.1    Zhang, Z.2    Lin, W.-Y.3    Torr, P.4
  • 3
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 4
    • 84897510450 scopus 로고    scopus 로고
    • Spatio-temporal human-object interactions for action recognition in videos
    • V. Escorcia and J. C. Niebles. Spatio-temporal human-object interactions for action recognition in videos. In ICCV, 2013
    • (2013) ICCV
    • Escorcia, V.1    Niebles, J.C.2
  • 5
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. JMLR, 9:1871-1874, 2008
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 6
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories. In CVPR, 2005
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 7
    • 35148899327 scopus 로고    scopus 로고
    • Objects in action: An approach for combining action understanding and object perception
    • A. Gupta and L. S. Davis. Objects in action: An approach for combining action understanding and object perception. In CVPR, 2007
    • (2007) CVPR
    • Gupta, A.1    Davis, L.S.2
  • 8
    • 84887337772 scopus 로고    scopus 로고
    • Representing videos using mid-level discriminative patches
    • A. Jain, A. Gupta, M. Rodriguez, and L. S. Davis. Representing videos using mid-level discriminative patches. In CVPR, 2013
    • (2013) CVPR
    • Jain, A.1    Gupta, A.2    Rodriguez, M.3    Davis, L.S.4
  • 9
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.3    Zisserman, A.4
  • 10
    • 77950552341 scopus 로고    scopus 로고
    • Simultaneous visual recognition of manipulation actions and manipulated objects
    • H. Kjellström, J. Romero, D. Martnez, and D. Kragíc. Simultaneous visual recognition of manipulation actions and manipulated objects. In ECCV. 2008
    • (2008) ECCV
    • Kjellström, H.1    Romero, J.2    Martínez, D.3    Kragíc, D.4
  • 11
    • 84893741990 scopus 로고    scopus 로고
    • Learning human activities and object affordances from rgb-d videos
    • H. S. Koppula, R. Gupta, and A. Saxena. Learning human activities and object affordances from rgb-d videos. CoRR, 2012
    • (2012) CoRR
    • Koppula, H.S.1    Gupta, R.2    Saxena, A.3
  • 13
    • 84867458382 scopus 로고    scopus 로고
    • Fine-grained kitchen activity recognition using rgb-d
    • J. Lei, X. Ren, and D. Fox. Fine-grained kitchen activity recognition using rgb-d. In UbiComp, 2012
    • (2012) UbiComp
    • Lei, J.1    Ren, X.2    Fox, D.3
  • 14
    • 84911363420 scopus 로고    scopus 로고
    • Range-sample depth feature for action recognition
    • C. Lu, J. Jia, and C.-K. Tang. Range-sample depth feature for action recognition. In CVPR, 2014
    • (2014) CVPR
    • Lu, C.1    Jia, J.2    Tang, C.-K.3
  • 15
    • 84863411575 scopus 로고    scopus 로고
    • Ensemble of exemplar-svms for object detection and beyond
    • T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011
    • (2011) ICCV
    • Malisiewicz, T.1    Gupta, A.2    Efros, A.A.3
  • 17
    • 0033285712 scopus 로고    scopus 로고
    • Exploiting human actions and object context for recognition tasks
    • D. Moore, I. Essa, and M. Hayes. Exploiting human actions and object context for recognition tasks. In ICCV, 1999
    • (1999) ICCV
    • Moore, D.1    Essa, I.2    Hayes, M.3
  • 18
    • 84981301217 scopus 로고    scopus 로고
    • Motion templates for automatic classification and retrieval of motion capture data
    • M. Müller and T. Röder. Motion templates for automatic classification and retrieval of motion capture data. In SCA, 2006
    • (2006) SCA
    • Müller, M.1    Röder, T.2
  • 19
    • 84898791167 scopus 로고    scopus 로고
    • Action and event recognition with fisher vectors on a compact feature set
    • D. Oneata, J. Verbeek, and C. Schmid. Action and event recognition with fisher vectors on a compact feature set. In ICCV, 2013
    • (2013) ICCV
    • Oneata, D.1    Verbeek, J.2    Schmid, C.3
  • 20
    • 84866717619 scopus 로고    scopus 로고
    • A combined pose, object, and feature model for action understanding
    • B. Packer, K. Saenko, and D. Koller. A combined pose, object, and feature model for action understanding. In CVPR, 2012
    • (2012) CVPR
    • Packer, B.1    Saenko, K.2    Koller, D.3
  • 21
    • 33845303529 scopus 로고    scopus 로고
    • Finegrained activity recognition by aggregating abstract object usage
    • D. J. Patterson, D. Fox, H. Kautz, and M. Philipose. Finegrained activity recognition by aggregating abstract object usage. In ISWC, 2005
    • (2005) ISWC
    • Patterson, D.J.1    Fox, D.2    Kautz, H.3    Philipose, M.4
  • 22
    • 84947130265 scopus 로고    scopus 로고
    • Action recognition with stacked fisher vectors
    • X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV. 2014
    • (2014) ECCV
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 23
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV. 2010
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 24
    • 84874537383 scopus 로고    scopus 로고
    • Explicit modeling of human-object interactions in realistic videos
    • A. Prest, V. Ferrari, and C. Schmid. Explicit modeling of human-object interactions in realistic videos. T-PAMI, 35(4):835-848, 2013
    • (2013) T-PAMI , vol.35 , Issue.4 , pp. 835-848
    • Prest, A.1    Ferrari, V.2    Schmid, C.3
  • 25
    • 84866661728 scopus 로고    scopus 로고
    • Discovering discriminative action parts from mid-level video representations
    • M. Raptis, I. Kokkinos, and S. Soatto. Discovering discriminative action parts from mid-level video representations. In CVPR, 2012
    • (2012) CVPR
    • Raptis, M.1    Kokkinos, I.2    Soatto, S.3
  • 26
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activities
    • M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity detection of cooking activities. In CVPR, 2012
    • (2012) CVPR
    • Rohrbach, M.1    Amin, S.2    Andriluka, M.3    Schiele, B.4
  • 27
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 28
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV. 2012
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 29
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103(1):60-79, 2013
    • (2013) IJCV , vol.103 , Issue.1 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4
  • 30
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition with depth cameras. In CVPR, 2012
    • (2012) CVPR
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 31
    • 84892618164 scopus 로고    scopus 로고
    • Mining motion atoms and phrases for complex action recognition
    • L. Wang, Y. Qiao, and X. Tang. Mining motion atoms and phrases for complex action recognition. In ICCV, 2013
    • (2013) ICCV
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 32
    • 79957467077 scopus 로고    scopus 로고
    • Hidden part models for human action recognition: Probabilistic versus max margin
    • Y. Wang and G. Mori. Hidden part models for human action recognition: Probabilistic versus max margin. T-PAMI, 33(7):1310-1323, 2011
    • (2011) T-PAMI , vol.33 , Issue.7 , pp. 1310-1323
    • Wang, Y.1    Mori, G.2
  • 33
  • 34
    • 84887345046 scopus 로고    scopus 로고
    • Detection of manipulation action consequences (mac)
    • Y. Yang, C. Fermuller, and Y. Aloimonos. Detection of manipulation action consequences (mac). In CVPR, 2013
    • (2013) CVPR
    • Yang, Y.1    Fermuller, C.2    Aloimonos, Y.3
  • 35
    • 84856672971 scopus 로고    scopus 로고
    • Human action recognition by learning bases of action attributes and parts
    • B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning bases of action attributes and parts. In ICCV, 2011
    • (2011) ICCV
    • Yao, B.1    Jiang, X.2    Khosla, A.3    Lin, A.L.4    Guibas, L.5    Fei-Fei, L.6
  • 36
    • 80053445891 scopus 로고    scopus 로고
    • Classifying actions and measuring action similarity by modeling the mutual context of objects and human poses
    • B. Yao, A. Khosla, and L. Fei-Fei. Classifying actions and measuring action similarity by modeling the mutual context of objects and human poses. ICML, 2011
    • (2011) ICML
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3
  • 37
    • 84898773205 scopus 로고    scopus 로고
    • The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection
    • M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection. In ICCV, 2013
    • (2013) ICCV
    • Zanfir, M.1    Leordeanu, M.2    Sminchisescu, C.3
  • 38
    • 84959250950 scopus 로고    scopus 로고
    • Pipelining localized semantic features for fine-grained action recognition
    • Y. Zhou, B. Ni, S. Yan, P. Moulin, and Q. Tian. Pipelining localized semantic features for fine-grained action recognition. In ECCV. 2014
    • (2014) ECCV
    • Zhou, Y.1    Ni, B.2    Yan, S.3    Moulin, P.4    Tian, Q.5
  • 39
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive Gaussian mixture model for background subtraction
    • Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In ICPR, 2004.
    • (2004) ICPR
    • Zivkovic, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.