메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1378-1385

A combined pose, object, and feature model for action understanding

Author keywords

[No Author keywords available]

Indexed keywords

ACTION MODELS; ACTION SEQUENCES; DATA SETS; FEATURE MODELS; HUMAN ACTIONS; HUMAN ACTIVITIES; OBJECT MANIPULATION; SEMANTIC ELEMENT; STATE OF THE ART; VIDEO SEQUENCES;

EID: 84866717619     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247824     Document Type: Conference Paper
Times cited : (62)

References (34)
  • 1
    • 84866707373 scopus 로고    scopus 로고
    • http://www.visint.org/.
  • 3
    • 84866707370 scopus 로고
    • Invariant surface characteristics for 3d object recognition in range images
    • 3
    • P. J. Besl and R. C. Jain. Invariant surface characteristics for 3d object recognition in range images. In CVGIP, 1990. 3
    • (1990) CVGIP
    • Besl, P.J.1    Jain, R.C.2
  • 4
    • 52649179212 scopus 로고    scopus 로고
    • Probabilistic discovery of time series motifs
    • 1, 2
    • B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In KDD, 2003. 1, 2
    • (2003) KDD
    • Chiu, B.1    Keogh, E.2    Lonardi, S.3
  • 5
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • 1, 2, 3
    • P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In VS-PETS,2005. 1, 2, 3
    • (2005) VS-PETS
    • Dollar, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 6
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 7
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. In PAMI, 2010. 7
    • (2010) PAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 7
    • 51949088307 scopus 로고    scopus 로고
    • Progressive search space reduction for human pose estimation
    • 2
    • V. Ferrari,M.Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In CVPR, 2008. 2
    • (2008) CVPR
    • Ferrari, V.1    Marin-Jimenez, M.2    Zisserman, A.3
  • 9
    • 77955990817 scopus 로고    scopus 로고
    • Real time motion capture using a single time-of-flight camera
    • 2
    • V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real time motion capture using a single time-of-flight camera. In CVPR, 2010. 2
    • (2010) CVPR
    • Ganapathi, V.1    Plagemann, C.2    Koller, D.3    Thrun, S.4
  • 11
    • 69549121743 scopus 로고    scopus 로고
    • Observing human-object interactions: Using spatial and functional compatibility for recognition
    • 2
    • A. Gupta, A. Kembhavi, and L. Davis. Observing human-object interactions: Using spatial and functional compatibility for recognition. In PAMI, 2009. 2
    • (2009) PAMI
    • Gupta, A.1    Kembhavi, A.2    Davis, L.3
  • 12
    • 85162379680 scopus 로고    scopus 로고
    • Using body-anchored priors for identifying actions in single images
    • 2
    • L. Karlinsky, M. Dinerstein, and S. Ullman. Using body-anchored priors for identifying actions in single images. In NIPS, 2010. 2
    • (2010) NIPS
    • Karlinsky, L.1    Dinerstein, M.2    Ullman, S.3
  • 13
    • 79952519527 scopus 로고    scopus 로고
    • Learning a hierarchy of discriminative space-time neighborhood features
    • 1, 2
    • A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-time neighborhood features. In CVPR, 2010. 1, 2
    • (2010) CVPR
    • Kovashka, A.1    Grauman, K.2
  • 14
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • 5
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010. 5
    • (2010) NIPS
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 16
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 8
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011. 8
    • (2011) ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 17
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • 4
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons.In IJCV, 2001. 4
    • (2001) IJCV
    • Leung, T.1    Malik, J.2
  • 18
    • 70450203660 scopus 로고    scopus 로고
    • Recognizing realistic actions from vidoes in the wild
    • 1, 2
    • J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from vidoes in the wild. In CVPR, 2009. 1, 2
    • (2009) CVPR
    • Liu, J.1    Luo, J.2    Shah, M.3
  • 19
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • 2, 8
    • J. Niebles, C.-W. Chen, and F.-F. L. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, 2010. 2, 8
    • (2010) ECCV
    • Niebles, J.1    Chen, C.-W.2    F-F, L.3
  • 20
    • 84866661408 scopus 로고    scopus 로고
    • A hierarchical model of shape and appearance for human action classification
    • 1, 2, 6
    • J. Niebles, H. Wang, and L. Fei-fei. A hierarchical model of shape and appearance for human action classification. In IJCV, 2008. 1, 2, 6
    • (2008) IJCV
    • Niebles, J.1    Wang, H.2    Fei-Fei, L.3
  • 21
    • 77956008382 scopus 로고    scopus 로고
    • Human action recognition using mutual invariants
    • 1, 2
    • V. Parameswara and R. Chellappa. Human action recognition using mutual invariants. In CVIU, 1998. 1, 2
    • (1998) CVIU
    • Parameswara, V.1    Chellappa, R.2
  • 22
    • 70450159373 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical spatial structures in images
    • 1, 2
    • D. Parikh, C. Zitnick, and T. Chen. Unsupervised learning of hierarchical spatial structures in images. In CVPR, 2009.1, 2
    • (2009) CVPR
    • Parikh, D.1    Zitnick, C.2    Chen, T.3
  • 23
    • 84856646751 scopus 로고    scopus 로고
    • Parsing video events with goal inference and intent prediction
    • 2
    • M. Pei, Y. Jia, and S. Zhu. Parsing video events with goal inference and intent prediction. In ICCV, 2011. 2
    • (2011) ICCV
    • Pei, M.1    Jia, Y.2    Zhu, S.3
  • 24
    • 0025465145 scopus 로고
    • Scale-space and edge detection using anisotropic diffusion
    • 3
    • P. Perona and J.Malik. Scale-space and edge detection using anisotropic diffusion. In PAMI, 1990. 3
    • (1990) PAMI
    • Perona, P.1    Malik, J.2
  • 25
    • 24644444341 scopus 로고    scopus 로고
    • Automatic annotation of everyday movements
    • 1, 2
    • D. Ramanan and D. A. Forsyth. Automatic annotation of everyday movements. In NIPS, 2003. 1, 2
    • (2003) NIPS
    • Ramanan, D.1    Forsyth, D.A.2
  • 26
    • 0036844204 scopus 로고    scopus 로고
    • View-invariant representation and recognition of actions
    • 1, 2, 3, 6
    • C. Rao, A. Yilmaz, and M. Shah. View-invariant representation and recognition of actions. In IJCV, 2002. 1, 2, 3, 6
    • (2002) IJCV
    • Rao, C.1    Yilmaz, A.2    Shah, M.3
  • 27
    • 70449570072 scopus 로고    scopus 로고
    • Action mach: Maximum average correlation height filter for action classification
    • 1, 2
    • M. Rodriguez, J. Ahmed, and M. Shah. Action mach: Maximum average correlation height filter for action classification. In CVPR, 2008. 1, 2
    • (2008) CVPR
    • Rodriguez, M.1    Ahmed, J.2    Shah, M.3
  • 29
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local svm approach
    • 1, 2
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm approach. In ICPR, 2004. 1, 2
    • (2004) ICPR
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 30
    • 80052878786 scopus 로고    scopus 로고
    • Real-time human pose recognition in parts from single depth images
    • 2
    • J. Shotton, A. Fitzgibbon, M. Cook, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011. 2
    • (2011) CVPR
    • Shotton, J.1    Fitzgibbon, A.2    Cook, M.3    Blake, A.4
  • 31
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • 5
    • I. Tsochantaridis, T. Hofmann, Y. Altun, and T. Joachims. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004. 5
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Altun, Y.3    Joachims, T.4
  • 32
    • 78751680120 scopus 로고    scopus 로고
    • Toward unsupervised activity discovery using multi-dimensional motif detection in time series
    • 1, 2
    • A. Vahdatpour, N. Amini, and M. Sarrafzadeh. Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In IJCAI, 2009. 1, 2
    • (2009) IJCAI
    • Vahdatpour, A.1    Amini, N.2    Sarrafzadeh, M.3
  • 33
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • 2
    • B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. In CVPR, 2010. 2
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 34
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • 5
    • C.-N. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009. 5
    • (2009) ICML
    • Yu, C.-N.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.