메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 418-426

A coarse-to-fine model for 3D pose estimation and sub-category recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; HIERARCHICAL SYSTEMS; OBJECT DETECTION; OBJECT RECOGNITION;

EID: 84959235498     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298639     Document Type: Conference Paper
Times cited : (91)

References (38)
  • 1
    • 77953225581 scopus 로고    scopus 로고
    • Constructing implicit 3d shape models for pose estimation
    • M. Arie-Nachimson and R. Basri. Constructing implicit 3d shape models for pose estimation. In ICCV, 2009
    • (2009) ICCV
    • Arie-Nachimson, M.1    Basri, R.2
  • 2
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3d chairs: Exemplar part-based 2d-3d align-ment using a large dataset of cad models
    • M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3d chairs: exemplar part-based 2d-3d align-ment using a large dataset of cad models. In CVPR, 2014
    • (2014) CVPR
    • Aubry, M.1    Maturana, D.2    Efros, A.A.3    Russell, B.C.4    Sivic, J.5
  • 3
    • 84887356895 scopus 로고    scopus 로고
    • Poof: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. Poof: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 4
    • 79953187637 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative models for multi-class object layout. IJCV, 2011
    • (2011) IJCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.C.3
  • 5
    • 84866719272 scopus 로고    scopus 로고
    • Dis-covering localized attributes for fine-grained recognition
    • K. Duan, D. Parikh, D. Crandall, and K. Grauman. Dis-covering localized attributes for fine-grained recognition. In CVPR, 2012
    • (2012) CVPR
    • Duan, K.1    Parikh, D.2    Crandall, D.3    Grauman, K.4
  • 6
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volu-metric primitives and pose-normalized appearance
    • R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volu-metric primitives and pose-normalized appearance. In ICCV, 2011
    • (2011) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.I.4    Darrell, T.5    Davis, L.S.6
  • 8
    • 84877784179 scopus 로고    scopus 로고
    • 3d object detec-tion and viewpoint estimation with a deformable 3d cuboid model
    • S. Fidler, S. Dickinson, and R. Urtasun. 3d object detec-tion and viewpoint estimation with a deformable 3d cuboid model. In NIPS, 2012
    • (2012) NIPS
    • Fidler, S.1    Dickinson, S.2    Urtasun, R.3
  • 9
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of object categories: Learning a hierarchy of parts
    • S. Fidler and A. Leonardis. Towards scalable representations of object categories: Learning a hierarchy of parts. In CVPR, 2007
    • (2007) CVPR
    • Fidler, S.1    Leonardis, A.2
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich fea-ture hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-ture hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 80051958131 scopus 로고    scopus 로고
    • Thinking inside the box: Using appearance models and context based on room geometry
    • V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using appearance models and context based on room geometry. In ECCV, 2010
    • (2010) ECCV
    • Hedau, V.1    Hoiem, D.2    Forsyth, D.3
  • 13
    • 84877738109 scopus 로고    scopus 로고
    • Analyzing 3d objects in clut-tered images
    • M. Hejrati and D. Ramanan. Analyzing 3d objects in clut-tered images. In NIPS, 2012
    • (2012) NIPS
    • Hejrati, M.1    Ramanan, D.2
  • 14
    • 85033458300 scopus 로고    scopus 로고
    • 3d object rep-resentations for fine-grained categorization
    • J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-resentations for fine-grained categorization. In 3dRR Work-shop, 2013
    • (2013) 3dRR Work-shop
    • Krause, J.1    Stark, M.2    Deng, J.3    Fei-Fei, L.4
  • 15
    • 77955993906 scopus 로고    scopus 로고
    • Multi-view object class detection with a 3d geometric model
    • J. Liebelt and C. Schmid. Multi-view object class detection with a 3d geometric model. In CVPR, 2010
    • (2010) CVPR
    • Liebelt, J.1    Schmid, C.2
  • 16
    • 84898778816 scopus 로고    scopus 로고
    • Parsing ikea objects: Fine pose estimation
    • J. Lim, H. Pirsiavash, and A. Torralba. Parsing ikea objects: Fine pose estimation. In ICCV, 2013
    • (2013) ICCV
    • Lim, J.1    Pirsiavash, H.2    Torralba, A.3
  • 17
    • 84959216767 scopus 로고    scopus 로고
    • Jointly optimizing 3d model fitting and fine-grained classification
    • Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly optimizing 3d model fitting and fine-grained classification. In ECCV, 2014
    • (2014) ECCV
    • Lin, Y.-L.1    Morariu, V.I.2    Hsu, W.3    Davis, L.S.4
  • 19
    • 84856629884 scopus 로고    scopus 로고
    • From contours to 3d object de-tection and pose estimation
    • N. Payet and S. Todorovic. From contours to 3d object de-tection and pose estimation. In ICCV, 2011
    • (2011) ICCV
    • Payet, N.1    Todorovic, S.2
  • 20
    • 80053438176 scopus 로고    scopus 로고
    • Convex max-product algorithms for continuous mrfs with applica-tions to protein folding
    • J. Peng, T. Hazan, D. McAllester, and R. Urtasun. Convex max-product algorithms for continuous mrfs with applica-tions to protein folding. In ICML, 2011
    • (2011) ICML
    • Peng, J.1    Hazan, T.2    McAllester, D.3    Urtasun, R.4
  • 22
    • 84866645948 scopus 로고    scopus 로고
    • Teaching 3d geometry to deformable part models
    • B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d geometry to deformable part models. In CVPR, 2012
    • (2012) CVPR
    • Pepik, B.1    Stark, M.2    Gehler, P.3    Schiele, B.4
  • 23
    • 85083950433 scopus 로고    scopus 로고
    • Multi-view priors for learning detectors from sparse viewpoint data
    • B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view priors for learning detectors from sparse viewpoint data. In ICLR, 2014
    • (2014) ICLR
    • Pepik, B.1    Stark, M.2    Gehler, P.3    Schiele, B.4
  • 24
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011
    • (2011) CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.3
  • 25
    • 50649097874 scopus 로고    scopus 로고
    • 3d generic object categorization, localization and pose estimation
    • S. Savarese and L. Fei-Fei. 3d generic object categorization, localization and pose estimation. In ICCV, 2007
    • (2007) ICCV
    • Savarese, S.1    Fei-Fei, L.2
  • 28
    • 77953177125 scopus 로고    scopus 로고
    • Learning a dense multiview representation for detection, viewpoint classifica-tion and synthesis
    • H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense multiview representation for detection, viewpoint classifica-tion and synthesis. In ICCV, 2009
    • (2009) ICCV
    • Su, H.1    Sun, M.2    Fei-Fei, L.3    Savarese, S.4
  • 30
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-tun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Al-Tun, Y.4
  • 33
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001
    • (2001) CVPR
    • Viola, P.1    Jones, M.2
  • 34
    • 84904687911 scopus 로고    scopus 로고
    • Beyond pascal: A benchmark for 3d object detection in the wild
    • Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection in the wild. In WACV, 2014
    • (2014) WACV
    • Xiang, Y.1    Mottaghi, R.2    Savarese, S.3
  • 35
    • 84866720197 scopus 로고    scopus 로고
    • Estimating the aspect layout of object categories
    • Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012
    • (2012) CVPR
    • Xiang, Y.1    Savarese, S.2
  • 36
    • 84866665892 scopus 로고    scopus 로고
    • A codebook-free and annotation-free approach for fine-grained image categoriza-tion
    • B. Yao, G. Bradski, and L. Fei-Fei. A codebook-free and annotation-free approach for fine-grained image categoriza-tion. In CVPR, 2012
    • (2012) CVPR
    • Yao, B.1    Bradski, G.2    Fei-Fei, L.3
  • 37
    • 70450134221 scopus 로고    scopus 로고
    • Unsuper-vised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
    • L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille. Unsuper-vised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion. In ECCV, 2008
    • (2008) ECCV
    • Zhu, L.1    Lin, C.2    Huang, H.3    Chen, Y.4    Yuille, A.5
  • 38
    • 84887396021 scopus 로고    scopus 로고
    • Detailed 3d representations for object recognition and modeling
    • Z. Zia, M. Stark, B. Schiele, and K. Schindler. Detailed 3d representations for object recognition and modeling. PAMI, 2013.
    • (2013) PAMI
    • Zia, Z.1    Stark, M.2    Schiele, B.3    Schindler, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.