메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Multi-view priors for learning detectors from sparse viewpoint data

Author keywords

[No Author keywords available]

Indexed keywords

FINE GRAINED; OBJECT CLASS; PRIOR DISTRIBUTION; ROBUST LEARNING; TARGET CLASS; TRAINING DATA; TRANSFER LEARNING; VISUAL FEATURE;

EID: 85083950433     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (51)
  • 1
    • 85080573569 scopus 로고    scopus 로고
    • Constructing implicit 3d shape models for pose estimation
    • M. Arie-Nachimson and R. Basri. Constructing implicit 3D shape models for pose estimation. In ICCV’09.
    • ICCV’09
    • Arie-Nachimson, M.1    Basri, R.2
  • 2
    • 85080580692 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In ICCV’11.
    • ICCV’11
    • Aytar, Y.1    Zisserman, A.2
  • 3
    • 85080478156 scopus 로고    scopus 로고
    • Cross-generalization: Learning novel classes from a single example by feature replacement
    • E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by feature replacement. In CVPR’05.
    • CVPR’05
    • Bart, E.1    Ullman, S.2
  • 4
    • 85080528396 scopus 로고    scopus 로고
    • Single-example learning of novel classes using representation by similarity
    • E. Bart and S. Ullman. Single-example learning of novel classes using representation by similarity. In BMVC’05.
    • BMVC’05
    • Bart, E.1    Ullman, S.2
  • 5
    • 80052896727 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV’10.
    • ECCV’10
    • Berg, T.L.1    Berg, A.C.2    Shih, J.3
  • 6
    • 33745841931 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR’05.
    • CVPR’05
    • Dalal, N.1    Triggs, B.2
  • 10
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV’11.
    • ICCV’11
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.I.4    Darrell, T.5    Davis, L.S.6
  • 14
    • 85080559377 scopus 로고    scopus 로고
    • 3D object detection and viewpoint estimation with a deformable 3d cuboid model
    • S. Fidler, S. Dickinson, and R. Urtasun. 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In NIPS’12.
    • NIPS’12
    • Fidler, S.1    Dickinson, S.2    Urtasun, R.3
  • 15
    • 85080590569 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance pseudo-metrics
    • M. Fink. Object classification from a single example utilizing class relevance pseudo-metrics. In NIPS’04.
    • NIPS’04
    • Fink, M.1
  • 16
    • 85080621597 scopus 로고    scopus 로고
    • What makes a good detector? - structured priors for learning from few examples
    • T. Gao, M. Stark, and D. Koller. What makes a good detector? - structured priors for learning from few examples. In ECCV’12.
    • ECCV’12
    • Gao, T.1    Stark, M.2    Koller, D.3
  • 17
    • 84902774431 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? the KITTI vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR’12.
    • CVPR’12
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 19
    • 84856653205 scopus 로고    scopus 로고
    • Discriminative mixture-of-templates for viewpoint classification
    • C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV’10.
    • ECCV’10
    • Gu, C.1    Ren, X.2
  • 20
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012.
    • (2012) ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 21
  • 22
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR’11.
    • CVPR’11
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 23
    • 85080471674 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR’09.
    • CVPR’09
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 24
    • 84898795597 scopus 로고    scopus 로고
    • From subcategories to visual composites: A multi-level framework for object detection
    • T. Lan, M. Raptis, L. Sigal, and G. Mori. From subcategories to visual composites: A multi-level framework for object detection. In ICCV’13.
    • ICCV’13
    • Lan, T.1    Raptis, M.2    Sigal, L.3    Mori, G.4
  • 25
    • 85080497700 scopus 로고    scopus 로고
    • Multi-view object class detection with a 3d geometric model
    • J. Liebelt and C. Schmid. Multi-view object class detection with a 3D geometric model. In CVPR’10.
    • CVPR’10
    • Liebelt, J.1    Schmid, C.2
  • 26
    • 85080507600 scopus 로고    scopus 로고
    • Viewpoint-independent object class detection using 3d feature maps
    • J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-independent object class detection using 3D feature maps. In CVPR’08.
    • CVPR’08
    • Liebelt, J.1    Schmid, C.2    Schertler, K.3
  • 27
    • 85080626575 scopus 로고    scopus 로고
    • Transfer learning by borrowing examples for multiclass object detection
    • J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for multiclass object detection. In NIPS’11.
    • NIPS’11
    • Lim, J.J.1    Salakhutdinov, R.2    Torralba, A.3
  • 28
    • 85080555241 scopus 로고    scopus 로고
    • Deformable part models revisited: A performance evaluation for object category pose estimation
    • R. J. Lopez-Sastre, T. Tuytelaars, and S. Savarese. Deformable part models revisited: A performance evaluation for object category pose estimation. In ICCV-WS CORP’11.
    • ICCV-WS CORP’11
    • Lopez-Sastre, R.J.1    Tuytelaars, T.2    Savarese, S.3
  • 29
    • 85080586070 scopus 로고    scopus 로고
    • Analyzing 3d objects in cluttered images
    • M.Hejrati and D.Ramanan. Analyzing 3d objects in cluttered images. In NIPS’12.
    • NIPS’12
    • Hejrati, M.1    Ramanan, D.2
  • 30
    • 85080547827 scopus 로고    scopus 로고
    • Learning from one example through shared densities on transforms
    • E. Miller, N. Matsakis, and P. Viola. Learning from One Example Through Shared Densities on Transforms. In CVPR’00.
    • CVPR’00
    • Miller, E.1    Matsakis, N.2    Viola, P.3
  • 31
    • 85047053141 scopus 로고    scopus 로고
    • Pose estimation for category specific multiview object localization
    • M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview object localization. In CVPR’09.
    • CVPR’09
    • Ozuysal, M.1    Lepetit, V.2    Fua, P.3
  • 32
    • 85080535814 scopus 로고    scopus 로고
    • From contours to 3d object detection and pose estimation
    • N. Payet and S. Todorovic. From contours to 3d object detection and pose estimation. In ICCV’11.
    • ICCV’11
    • Payet, N.1    Todorovic, S.2
  • 38
  • 39
    • 56749091031 scopus 로고    scopus 로고
    • 3D generic object categorization, localization and pose estimation
    • S. Savarese and L. Fei-Fei. 3D generic object categorization, localization and pose estimation. In ICCV’07.
    • ICCV’07
    • Savarese, S.1    Fei-Fei, L.2
  • 40
    • 85080480370 scopus 로고    scopus 로고
    • Back to the future: Learning shape models from 3d cad data
    • M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from 3d cad data. In BMVC’10.
    • BMVC’10
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 41
    • 84856648378 scopus 로고    scopus 로고
    • A shape-based object class model for knowledge transfer
    • M. Stark, M. Goesele, and B. Schiele. A shape-based object class model for knowledge transfer. In ICCV’09.
    • ICCV’09
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 43
    • 77953177125 scopus 로고    scopus 로고
    • Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories
    • H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In ICCV’09.
    • ICCV’09
    • Su, H.1    Sun, M.2    Fei-Fei, L.3    Savarese, S.4
  • 44
    • 85080530691 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first
    • S. Thrun. Is learning the n-th thing any easier than learning the first. In NIPS’06.
    • NIPS’06
    • Thrun, S.1
  • 47
    • 85080531273 scopus 로고    scopus 로고
    • Estimating the aspect layout of object categories
    • Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR’12.
    • CVPR’12
    • Xiang, Y.1    Savarese, S.2
  • 48
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and discrimination for fine-grained image categorization. In CVPR’11.
    • CVPR’11
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3
  • 49
    • 85080538794 scopus 로고    scopus 로고
    • Explicit occlusion modeling for 3d object class representations
    • M. Z. Zia, M. Stark, and K. Schindler. Explicit occlusion modeling for 3d object class representations. In CVPR’13.
    • CVPR’13
    • Zia, M.Z.1    Stark, M.2    Schindler, K.3
  • 50
    • 84897475149 scopus 로고    scopus 로고
    • Revisiting 3d geometric models for accurate object shape and pose
    • M. Z. Zia, M. Stark, K. Schindler, and B. Schiele. Revisiting 3d geometric models for accurate object shape and pose. In 3dRR-11.
    • 3dRR-11
    • Zia, M.Z.1    Stark, M.2    Schindler, K.3    Schiele, B.4
  • 51
    • 85080625770 scopus 로고    scopus 로고
    • Exploiting object hierarchy: Combining models from different category levels
    • A. Zweig and D. Weinshall. Exploiting object hierarchy: Combining models from different category levels. In ICCV’07.
    • ICCV’07
    • Zweig, A.1    Weinshall, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.