-
1
-
-
85080573569
-
Constructing implicit 3d shape models for pose estimation
-
M. Arie-Nachimson and R. Basri. Constructing implicit 3D shape models for pose estimation. In ICCV’09.
-
ICCV’09
-
-
Arie-Nachimson, M.1
Basri, R.2
-
2
-
-
85080580692
-
Tabula rasa: Model transfer for object category detection
-
Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In ICCV’11.
-
ICCV’11
-
-
Aytar, Y.1
Zisserman, A.2
-
3
-
-
85080478156
-
Cross-generalization: Learning novel classes from a single example by feature replacement
-
E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by feature replacement. In CVPR’05.
-
CVPR’05
-
-
Bart, E.1
Ullman, S.2
-
4
-
-
85080528396
-
Single-example learning of novel classes using representation by similarity
-
E. Bart and S. Ullman. Single-example learning of novel classes using representation by similarity. In BMVC’05.
-
BMVC’05
-
-
Bart, E.1
Ullman, S.2
-
5
-
-
80052896727
-
Automatic attribute discovery and characterization from noisy web data
-
T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV’10.
-
ECCV’10
-
-
Berg, T.L.1
Berg, A.C.2
Shih, J.3
-
6
-
-
33745841931
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR’05.
-
CVPR’05
-
-
Dalal, N.1
Triggs, B.2
-
10
-
-
84856640018
-
Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
-
R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV’11.
-
ICCV’11
-
-
Farrell, R.1
Oza, O.2
Zhang, N.3
Morariu, V.I.4
Darrell, T.5
Davis, L.S.6
-
14
-
-
85080559377
-
3D object detection and viewpoint estimation with a deformable 3d cuboid model
-
S. Fidler, S. Dickinson, and R. Urtasun. 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In NIPS’12.
-
NIPS’12
-
-
Fidler, S.1
Dickinson, S.2
Urtasun, R.3
-
15
-
-
85080590569
-
Object classification from a single example utilizing class relevance pseudo-metrics
-
M. Fink. Object classification from a single example utilizing class relevance pseudo-metrics. In NIPS’04.
-
NIPS’04
-
-
Fink, M.1
-
16
-
-
85080621597
-
What makes a good detector? - structured priors for learning from few examples
-
T. Gao, M. Stark, and D. Koller. What makes a good detector? - structured priors for learning from few examples. In ECCV’12.
-
ECCV’12
-
-
Gao, T.1
Stark, M.2
Koller, D.3
-
17
-
-
84902774431
-
Are we ready for autonomous driving? the KITTI vision benchmark suite
-
A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR’12.
-
CVPR’12
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
19
-
-
84856653205
-
Discriminative mixture-of-templates for viewpoint classification
-
C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV’10.
-
ECCV’10
-
-
Gu, C.1
Ren, X.2
-
20
-
-
84887395819
-
Discriminative decorrelation for clustering and classification
-
B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012.
-
(2012)
ECCV
-
-
Hariharan, B.1
Malik, J.2
Ramanan, D.3
-
21
-
-
85080485908
-
Discriminative sub-categorization
-
M. Hoai and A. Zisserman. Discriminative sub-categorization. In CVPR’13.
-
CVPR’13
-
-
Hoai, M.1
Zisserman, A.2
-
22
-
-
80052895155
-
What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
-
B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR’11.
-
CVPR’11
-
-
Kulis, B.1
Saenko, K.2
Darrell, T.3
-
23
-
-
85080471674
-
Learning to detect unseen object classes by between-class attribute transfer
-
C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR’09.
-
CVPR’09
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
24
-
-
84898795597
-
From subcategories to visual composites: A multi-level framework for object detection
-
T. Lan, M. Raptis, L. Sigal, and G. Mori. From subcategories to visual composites: A multi-level framework for object detection. In ICCV’13.
-
ICCV’13
-
-
Lan, T.1
Raptis, M.2
Sigal, L.3
Mori, G.4
-
25
-
-
85080497700
-
Multi-view object class detection with a 3d geometric model
-
J. Liebelt and C. Schmid. Multi-view object class detection with a 3D geometric model. In CVPR’10.
-
CVPR’10
-
-
Liebelt, J.1
Schmid, C.2
-
26
-
-
85080507600
-
Viewpoint-independent object class detection using 3d feature maps
-
J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-independent object class detection using 3D feature maps. In CVPR’08.
-
CVPR’08
-
-
Liebelt, J.1
Schmid, C.2
Schertler, K.3
-
27
-
-
85080626575
-
Transfer learning by borrowing examples for multiclass object detection
-
J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for multiclass object detection. In NIPS’11.
-
NIPS’11
-
-
Lim, J.J.1
Salakhutdinov, R.2
Torralba, A.3
-
28
-
-
85080555241
-
Deformable part models revisited: A performance evaluation for object category pose estimation
-
R. J. Lopez-Sastre, T. Tuytelaars, and S. Savarese. Deformable part models revisited: A performance evaluation for object category pose estimation. In ICCV-WS CORP’11.
-
ICCV-WS CORP’11
-
-
Lopez-Sastre, R.J.1
Tuytelaars, T.2
Savarese, S.3
-
29
-
-
85080586070
-
Analyzing 3d objects in cluttered images
-
M.Hejrati and D.Ramanan. Analyzing 3d objects in cluttered images. In NIPS’12.
-
NIPS’12
-
-
Hejrati, M.1
Ramanan, D.2
-
30
-
-
85080547827
-
Learning from one example through shared densities on transforms
-
E. Miller, N. Matsakis, and P. Viola. Learning from One Example Through Shared Densities on Transforms. In CVPR’00.
-
CVPR’00
-
-
Miller, E.1
Matsakis, N.2
Viola, P.3
-
31
-
-
85047053141
-
Pose estimation for category specific multiview object localization
-
M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview object localization. In CVPR’09.
-
CVPR’09
-
-
Ozuysal, M.1
Lepetit, V.2
Fua, P.3
-
32
-
-
85080535814
-
From contours to 3d object detection and pose estimation
-
N. Payet and S. Todorovic. From contours to 3d object detection and pose estimation. In ICCV’11.
-
ICCV’11
-
-
Payet, N.1
Todorovic, S.2
-
36
-
-
80052902380
-
Learning people detection models from few training samples
-
L. Pishchulin, A. Jain, C. Wojek, M. Andriluka, T. Thormaehlen, and B. Schiele. Learning people detection models from few training samples. In CVPR’11.
-
CVPR’11
-
-
Pishchulin, L.1
Jain, A.2
Wojek, C.3
Andriluka, M.4
Thormaehlen, T.5
Schiele, B.6
-
39
-
-
56749091031
-
3D generic object categorization, localization and pose estimation
-
S. Savarese and L. Fei-Fei. 3D generic object categorization, localization and pose estimation. In ICCV’07.
-
ICCV’07
-
-
Savarese, S.1
Fei-Fei, L.2
-
40
-
-
85080480370
-
Back to the future: Learning shape models from 3d cad data
-
M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from 3d cad data. In BMVC’10.
-
BMVC’10
-
-
Stark, M.1
Goesele, M.2
Schiele, B.3
-
41
-
-
84856648378
-
A shape-based object class model for knowledge transfer
-
M. Stark, M. Goesele, and B. Schiele. A shape-based object class model for knowledge transfer. In ICCV’09.
-
ICCV’09
-
-
Stark, M.1
Goesele, M.2
Schiele, B.3
-
42
-
-
84898407429
-
Fine-grained categorization for 3d scene understanding
-
M. Stark, J. Krause, B. Pepik, D. Meger, J. Little, B. Schiele, and D. Koller. Fine-grained categorization for 3d scene understanding. In BMVC’12.
-
BMVC’12
-
-
Stark, M.1
Krause, J.2
Pepik, B.3
Meger, D.4
Little, J.5
Schiele, B.6
Koller, D.7
-
43
-
-
77953177125
-
Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories
-
H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In ICCV’09.
-
ICCV’09
-
-
Su, H.1
Sun, M.2
Fei-Fei, L.3
Savarese, S.4
-
44
-
-
85080530691
-
Is learning the n-th thing any easier than learning the first
-
S. Thrun. Is learning the n-th thing any easier than learning the first. In NIPS’06.
-
NIPS’06
-
-
Thrun, S.1
-
45
-
-
84898422156
-
Efficient 3d object detection using multiple pose-specific classifiers
-
M. Villamizar, H. Grabner, J. Andrade-Cetto, A. Sanfeliu, L. V. Gool, and F. Moreno-Noguer. Efficient 3d object detection using multiple pose-specific classifiers. In BMVC’11.
-
BMVC’11
-
-
Villamizar, M.1
Grabner, H.2
Andrade-Cetto, J.3
Sanfeliu, A.4
Gool, L.V.5
Moreno-Noguer, F.6
-
46
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR’10.
-
CVPR’10
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
47
-
-
85080531273
-
Estimating the aspect layout of object categories
-
Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR’12.
-
CVPR’12
-
-
Xiang, Y.1
Savarese, S.2
-
48
-
-
80052872695
-
Combining randomization and discrimination for fine-grained image categorization
-
B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and discrimination for fine-grained image categorization. In CVPR’11.
-
CVPR’11
-
-
Yao, B.1
Khosla, A.2
Fei-Fei, L.3
-
49
-
-
85080538794
-
Explicit occlusion modeling for 3d object class representations
-
M. Z. Zia, M. Stark, and K. Schindler. Explicit occlusion modeling for 3d object class representations. In CVPR’13.
-
CVPR’13
-
-
Zia, M.Z.1
Stark, M.2
Schindler, K.3
-
50
-
-
84897475149
-
Revisiting 3d geometric models for accurate object shape and pose
-
M. Z. Zia, M. Stark, K. Schindler, and B. Schiele. Revisiting 3d geometric models for accurate object shape and pose. In 3dRR-11.
-
3dRR-11
-
-
Zia, M.Z.1
Stark, M.2
Schindler, K.3
Schiele, B.4
-
51
-
-
85080625770
-
Exploiting object hierarchy: Combining models from different category levels
-
A. Zweig and D. Weinshall. Exploiting object hierarchy: Combining models from different category levels. In ICCV’07.
-
ICCV’07
-
-
Zweig, A.1
Weinshall, D.2
|