메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3466-3473

A codebook-free and annotation-free approach for fine-grained image categorization

Author keywords

[No Author keywords available]

Indexed keywords

BIRD SPECIES; CLASSIFICATION APPROACH; CODE-WORDS; DATA SETS; HIGH THROUGHPUT; HUMAN ANNOTATIONS; IMAGE CATEGORIZATION; IMAGE INFORMATION; IMAGE REPRESENTATIONS; KEYPOINTS; OBJECT ATTRIBUTES; OBJECT CLASSIFICATION; VISUAL APPEARANCE;

EID: 84866665892     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248088     Document Type: Conference Paper
Times cited : (143)

References (33)
  • 2
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • 2
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009. 2
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • 4
    • L. Breiman. Bagging predictors. Mach. Learn., 24:123-140, 1996. 4
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 4, 6
    • L. Breiman. Random forests. Mach. Learn., 45:5-32, 2001. 4, 6
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • 2
    • A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011. 2
    • (2011) AISTATS
    • Coates, A.1    Lee, H.2    Ng, A.3
  • 8
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10,000 image categories tell us?
    • 2
    • J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, 2010. 2
    • (2010) ECCV
    • Deng, J.1    Berg, A.2    Li, K.3    Fei-Fei, L.4
  • 10
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • 1, 2, 5, 6, 7
    • R. Farrell, O. Oza, N. Zhang, V. Morariu, T. Darrell, and L. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV, 2011. 1, 2, 5, 6, 7
    • (2011) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.4    Darrell, T.5    Davis, L.6
  • 12
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • 2
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In ICCV, 2003. 2
    • (2003) ICCV
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 13
    • 84864048681 scopus 로고    scopus 로고
    • Subordinate class recognition using relational object models
    • 1
    • A. Hillel and D. Weinshall. Subordinate class recognition using relational object models. In NIPS, 2007. 1
    • (2007) NIPS
    • Hillel, A.1    Weinshall, D.2
  • 15
    • 84856685492 scopus 로고    scopus 로고
    • Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes
    • 2, 3, 4
    • S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In ICCV, 2011. 2, 3, 4
    • (2011) ICCV
    • Hinterstoisser, S.1    Holzer, S.2    Cagniart, C.3    Ilic, S.4    Konolige, K.5    Navab, N.6    Lepetit, V.7
  • 17
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1, 2, 5, 6
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1, 2, 5, 6
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 18
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification and semantic feature sparsification
    • 2
    • L.-J. Li, H. Su, E. Xing, and L. Fei-Fei. Object bank: A high-level image representation for scene classification and semantic feature sparsification. In NIPS, 2010. 2
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.3    Fei-Fei, L.4
  • 19
    • 80052880806 scopus 로고    scopus 로고
    • Action recognition from a distributed representation of pose and appearance
    • 2
    • S. Maji, L. Bourdev, and J. Malik. Action recognition from a distributed representation of pose and appearance. In CVPR, 2011. 2
    • (2011) CVPR
    • Maji, S.1    Bourdev, L.2    Malik, J.3
  • 21
    • 84866672499 scopus 로고    scopus 로고
    • On feature selection, biasvariance, and bagging
    • 4
    • M. Munson and R. Caruana. On feature selection, biasvariance, and bagging. In ECML PKDD, 2009. 4
    • (2009) ECML PKDD
    • Munson, M.1    Caruana, R.2
  • 22
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • 2
    • M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In CVPR, 2006. 2
    • (2006) CVPR
    • Nilsback, M.-E.1    Zisserman, A.2
  • 25
    • 80052896768 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • 2
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, 2010. 2
    • (2010) ECCV
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 26
  • 27
    • 84856635994 scopus 로고    scopus 로고
    • Multi class recognition and part localization with humans in the loop
    • 1, 2, 5
    • C. Wah, S. Branson, P. Perona, and S. Belongie. Multi class recognition and part localization with humans in the loop. In ICCV, 2011. 1, 2, 5
    • (2011) ICCV
    • Wah, C.1    Branson, S.2    Perona, P.3    Belongie, S.4
  • 28
    • 77955996870 scopus 로고    scopus 로고
    • Learning locality-constrained linear coding for image classification
    • 1, 2, 7
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Learning locality-constrained linear coding for image classification. In CVPR, 2010. 1, 2, 7
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 30
    • 77955987964 scopus 로고    scopus 로고
    • Grouplet: A structured image representation for recognizing human and object interactions
    • 2
    • B. Yao and L. Fei-Fei. Grouplet: A structured image representation for recognizing human and object interactions. In CVPR, 2010. 2
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 31
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • 1, 2, 5, 6, 7
    • B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and discrimination for fine-grained image categorization. In CVPR, 2011. 1, 2, 5, 6, 7
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3
  • 32
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure (CCCP)
    • 5
    • A. Yuille and A. Rangarajan. The concave-convex procedure (CCCP). Neural Comput., 15(4):915-936, 2003. 5
    • (2003) Neural Comput. , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.1    Rangarajan, A.2
  • 33
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • 2
    • X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010. 2
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.