메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4428-4436

Object-based RGBD image co-segmentation with mutex constraint

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE PROCESSING; IMAGE SEGMENTATION; PATTERN RECOGNITION;

EID: 84959217613     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299072     Document Type: Conference Paper
Times cited : (107)

References (38)
  • 2
    • 79958735215 scopus 로고    scopus 로고
    • Interactively co-segmentating topically related images with intelligent scribble guidance
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. Interactively co-segmentating topically related images with intelligent scribble guidance. IJCV, 93(3):273-292, 2011
    • (2011) IJCV , vol.93 , Issue.3 , pp. 273-292
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 3
    • 84455172978 scopus 로고    scopus 로고
    • Depth kernel descriptors for object recognition
    • L. Bo, X. Ren, and D. Fox. Depth kernel descriptors for object recognition. In IROS, pages 821-826, 2011
    • (2011) IROS , pp. 821-826
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 4
    • 85162001547 scopus 로고    scopus 로고
    • Segmentation as maximumweight independent set
    • W. Brendel and S. Todorovic. Segmentation as maximumweight independent set. In NIPS, 2010
    • (2010) NIPS
    • Brendel, W.1    Todorovic, S.2
  • 5
    • 84913557899 scopus 로고    scopus 로고
    • Co-saliency detection via base reconstruction
    • X. Cao, Y. Cheng, Z. Tao, and H. Fu. Co-saliency detection via base reconstruction. In ACM MM, pages 997-1000, 2014
    • (2014) ACM MM , pp. 997-1000
    • Cao, X.1    Cheng, Y.2    Tao, Z.3    Fu, H.4
  • 6
    • 84938324278 scopus 로고    scopus 로고
    • Selfadaptively weighted co-saliency detection via rank constraint
    • X. Cao, Z. Tao, B. Zhang, H. Fu, and W. Feng. Selfadaptively weighted co-saliency detection via rank constraint. TIP, 23(9):4175-4186, 2014
    • (2014) TIP , vol.23 , Issue.9 , pp. 4175-4186
    • Cao, X.1    Tao, Z.2    Zhang, B.3    Fu, H.4    Feng, W.5
  • 7
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. TPA-MI, 34(7):1312-1328, 2012
    • (2012) TPA-MI , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 8
    • 80052910219 scopus 로고    scopus 로고
    • From co-saliency to cosegmentation: An efficient and fully unsupervised energy minimization model
    • K. Chang, T. Liu, and S. Lai. From co-saliency to cosegmentation: An efficient and fully unsupervised energy minimization model. In ICCV, pages 2129-2136, 2011
    • (2011) ICCV , pp. 2129-2136
    • Chang, K.1    Liu, T.2    Lai, S.3
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages 886-893, 2005
    • (2005) CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 11
    • 84891598441 scopus 로고    scopus 로고
    • Category-independent object proposals with diverse ranking
    • I. Endres and D. Hoiem. Category-independent object proposals with diverse ranking. TPAMI, 36(2):222-234, 2014
    • (2014) TPAMI , vol.36 , Issue.2 , pp. 222-234
    • Endres, I.1    Hoiem, D.2
  • 12
    • 84883324670 scopus 로고    scopus 로고
    • Cluster-based co-saliency detection
    • H. Fu, X. Cao, and Z. Tu. Cluster-based co-saliency detection. TIP, 22(10):3766-3778, 2013
    • (2013) TIP , vol.22 , Issue.10 , pp. 3766-3778
    • Fu, H.1    Cao, X.2    Tu, Z.3
  • 13
    • 84911424892 scopus 로고    scopus 로고
    • Object-based multiple foreground video co-segmentation
    • H. Fu, D. Xu, B. Zhang, and S. Lin. Object-based multiple foreground video co-segmentation. In CVPR, pages 3166-3173, 2014
    • (2014) CVPR , pp. 3166-3173
    • Fu, H.1    Xu, D.2    Zhang, B.3    Lin, S.4
  • 14
    • 84906344142 scopus 로고    scopus 로고
    • Learning Rich Features from RGB-D Images for Object Detection and Segmentation
    • S. Gupta, R. Girshick, and P. Arbel. Learning Rich Features from RGB-D Images for Object Detection and Segmentation. In ECCV, pages 345-360, 2014
    • (2014) ECCV , pp. 345-360
    • Gupta, S.1    Girshick, R.2    Arbel, P.3
  • 15
    • 77953213168 scopus 로고    scopus 로고
    • An efficient algorithm for cosegmentation
    • D. Hochbaum and V. Singh. An efficient algorithm for cosegmentation. In CVPR, pages 269-276, 2009
    • (2009) CVPR , pp. 269-276
    • Hochbaum, D.1    Singh, V.2
  • 16
    • 84911456672 scopus 로고    scopus 로고
    • RIGOR: Reusing inference in graph cuts for generating object regions
    • A. Humayun and J. Rehg. RIGOR: Reusing Inference in Graph Cuts for generating Object Regions. In CVPR, pages 336-343, 2014
    • (2014) CVPR , pp. 336-343
    • Humayun, A.1    Rehg, J.2
  • 17
    • 77955990943 scopus 로고    scopus 로고
    • Discriminative clustering for image co-segmentation
    • A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In CVPR, pages 1943-1950, 2010
    • (2010) CVPR , pp. 1943-1950
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 18
    • 84907834110 scopus 로고    scopus 로고
    • Depth transfer: Depth extraction from video using non-parametric sampling
    • K. Karsch, C. Liu, and S. Kang. Depth transfer: Depth extraction from video using non-parametric sampling. TPAMI, 36(11):2144-2158, 2014
    • (2014) TPAMI , vol.36 , Issue.11 , pp. 2144-2158
    • Karsch, K.1    Liu, C.2    Kang, S.3
  • 19
    • 84856636112 scopus 로고    scopus 로고
    • Distributed cosegmentation via submodular optimization on anisotropic diffusion
    • G. Kim, E. Xing, L. Fei-Fei, and T. Kanade. Distributed cosegmentation via submodular optimization on anisotropic diffusion. In ICCV, pages 169-176, 2011
    • (2011) ICCV , pp. 169-176
    • Kim, G.1    Xing, E.2    Fei-Fei, L.3    Kanade, T.4
  • 20
    • 84906508364 scopus 로고    scopus 로고
    • Geodesic object proposals
    • P. Krahenbuhl and V. Koltun. Geodesic object proposals. In ECCV, pages 725-739, 2014
    • (2014) ECCV , pp. 725-739
    • Krahenbuhl, P.1    Koltun, V.2
  • 21
    • 84455168545 scopus 로고    scopus 로고
    • A large-scale hierarchical multi-view RGB-D object dataset
    • K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view RGB-D object dataset. In ICRA, pages 1817-1824, 2011
    • (2011) ICRA , pp. 1817-1824
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 22
    • 84867871481 scopus 로고    scopus 로고
    • Depth matters: Influence of depth cues on visual saliency
    • C. Lang, T. Nguyen, H. Katti, K. Yadati, M. Kankanhalli, and S. Yan. Depth matters: Influence of depth cues on visual saliency. In ECCV, pages 101-115, 2012
    • (2012) ECCV , pp. 101-115
    • Lang, C.1    Nguyen, T.2    Katti, H.3    Yadati, K.4    Kankanhalli, M.5    Yan, S.6
  • 23
    • 84866714644 scopus 로고    scopus 로고
    • Maximum weight cliques with mutex constraints for video object segmentation
    • T. Ma and L. Latecki. Maximum weight cliques with mutex constraints for video object segmentation. In CVPR, pages 670-677, 2012
    • (2012) CVPR , pp. 670-677
    • Ma, T.1    Latecki, L.2
  • 24
    • 84866392799 scopus 로고    scopus 로고
    • Object co-segmentation based on shortest path algorithm and saliency model
    • F. Meng, H. Li, G. Liu, and K. Ngan. Object co-segmentation based on shortest path algorithm and saliency model. TMM, 14(5):1429-1441, 2012
    • (2012) TMM , vol.14 , Issue.5 , pp. 1429-1441
    • Meng, F.1    Li, H.2    Liu, G.3    Ngan, K.4
  • 25
    • 84864436634 scopus 로고    scopus 로고
    • Segmenting "simple" objects using RGB-D
    • A. Mishra, A. Shrivastava, and Y. Aloimonos. Segmenting "simple" objects using RGB-D. In ICRA, pages 4406-4413, 2012
    • (2012) ICRA , pp. 4406-4413
    • Mishra, A.1    Shrivastava, A.2    Aloimonos, Y.3
  • 26
    • 80052910929 scopus 로고    scopus 로고
    • Scale invariant cosegmentation for image groups
    • L. Mukherjee, V. Singh, and J. Peng. Scale invariant cosegmentation for image groups. In CVPR, pages 1881-1888, 2011
    • (2011) CVPR , pp. 1881-1888
    • Mukherjee, L.1    Singh, V.2    Peng, J.3
  • 27
    • 84866702857 scopus 로고    scopus 로고
    • Leveraging stereopsis for saliency analysis
    • Y. Niu, Y. Geng, X. Li, and F. Liu. Leveraging stereopsis for saliency analysis. In CVPR, pages 454-461, 2012
    • (2012) CVPR , pp. 454-461
    • Niu, Y.1    Geng, Y.2    Li, X.3    Liu, F.4
  • 28
    • 84906484161 scopus 로고    scopus 로고
    • RGBD salient object detection: A benchmark and algorithms
    • H. Peng, B. Li, W. Xiong, W. Hu, and R. Ji. RGBD Salient Object Detection: A Benchmark and Algorithms. In ECCV, pages 92-109, 2014
    • (2014) ECCV , pp. 92-109
    • Peng, H.1    Li, B.2    Xiong, W.3    Hu, W.4    Ji, R.5
  • 29
    • 84872310852 scopus 로고    scopus 로고
    • Segmentation of unknown objects in indoor environments
    • A. Richtsfeld, M. Thomas, J. Prankl, M. Zillich, and M. Vincze. Segmentation of unknown objects in indoor environments. In IROS, pages 4791-4796, 2012
    • (2012) IROS , pp. 4791-4796
    • Richtsfeld, A.1    Thomas, M.2    Prankl, J.3    Zillich, M.4    Vincze, M.5
  • 30
    • 33845587625 scopus 로고    scopus 로고
    • Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs
    • C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of Image Pairs by Histogram Matching-Incorporating a Global Constraint into MRFs. In CVPR, pages 993-1000, 2006
    • (2006) CVPR , pp. 993-1000
    • Rother, C.1    Minka, T.2    Blake, A.3    Kolmogorov, V.4
  • 31
    • 84887379226 scopus 로고    scopus 로고
    • Unsupervised joint object discovery and segmentation in internet images
    • M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object discovery and segmentation in internet images. In CVPR, pages 1939-1946, 2013
    • (2013) CVPR , pp. 1939-1946
    • Rubinstein, M.1    Joulin, A.2    Kopf, J.3    Liu, C.4
  • 32
    • 84866645316 scopus 로고    scopus 로고
    • Unsupervised co-segmentation through region matching
    • J. Rubio, J. Serrat, A. Lopez, and N. Paragios. Unsupervised co-segmentation through region matching. In CVPR, pages 749-756, 2012
    • (2012) CVPR , pp. 749-756
    • Rubio, J.1    Serrat, J.2    Lopez, A.3    Paragios, N.4
  • 33
    • 84867713871 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from RGBD images
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from RGBD images. In ECCV, pages 746-760, 2012
    • (2012) ECCV , pp. 746-760
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 34
    • 84881160857 scopus 로고    scopus 로고
    • Selective search for object recognition
    • J. Uijlings, K. Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 104(2):154-171, 2013
    • (2013) IJCV , vol.104 , Issue.2 , pp. 154-171
    • Uijlings, J.1    Sande, K.2    Gevers, T.3    Smeulders, A.4
  • 36
    • 84898809523 scopus 로고    scopus 로고
    • Image co-segmentation via consistent functional maps
    • F. Wang, Q. Huang, and L. J. Guibas. Image co-segmentation via consistent functional maps. In CVPR, pages 849-856, 2013
    • (2013) CVPR , pp. 849-856
    • Wang, F.1    Huang, Q.2    Guibas, L.J.3
  • 37
    • 84887357058 scopus 로고    scopus 로고
    • Saliency detection via graph-based manifold ranking
    • C. Yang, L. Zhang, H. Lu, X. Ruan, and M. Yang. Saliency detection via graph-based manifold ranking. In CVPR, pages 3166-3173, 2013
    • (2013) CVPR , pp. 3166-3173
    • Yang, C.1    Zhang, L.2    Lu, H.3    Ruan, X.4    Yang, M.5
  • 38
    • 84911390996 scopus 로고    scopus 로고
    • Saliency optimization from robust background detection
    • W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization from robust background detection. In CVPR, pages 2814-2821, 2014.
    • (2014) CVPR , pp. 2814-2821
    • Zhu, W.1    Liang, S.2    Wei, Y.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.