-
1
-
-
78650965881
-
Frequency-tuned salient region detection
-
1, 5, 6
-
R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk. Frequency-tuned salient region detection. In IEEE CVPR, pages 1597-1604, 2009. 1, 5, 6
-
(2009)
IEEE CVPR
, pp. 1597-1604
-
-
Achanta, R.1
Hemami, S.2
Estrada, F.3
Süsstrunk, S.4
-
2
-
-
84866641785
-
Saliency detection using maximum symmetric surround
-
6
-
R. Achanta and S. Süsstrunk. Saliency detection using maximum symmetric surround. In IEEE ICIP, 2010. 6
-
(2010)
IEEE ICIP
-
-
Achanta, R.1
Süsstrunk, S.2
-
3
-
-
80052948224
-
Global contrast based salient region detection
-
1, 2, 3, 6
-
M. Cheng, G. Zhang, N. J. Mitra, X. Huang, and S. Hu. Global contrast based salient region detection. In IEEE CVPR, pages 409-416, 2011. 1, 2, 3, 6
-
(2011)
IEEE CVPR
, pp. 409-416
-
-
Cheng, M.1
Zhang, G.2
Mitra, N.J.3
Huang, X.4
Hu, S.5
-
4
-
-
0043201346
-
Inferring region salience from binary and gray-level images
-
1
-
Y. Cohen and R. Basri. Inferring region salience from binary and gray-level images. Pattern recognition, 36:2349-2362, 2003. 1
-
(2003)
Pattern Recognition
, vol.36
, pp. 2349-2362
-
-
Cohen, Y.1
Basri, R.2
-
5
-
-
80052903094
-
Visual saliency detection by spatially weighted dissimilarity
-
1
-
L. Duan, C.Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency detection by spatially weighted dissimilarity. In IEEE CVPR, pages 473-480, 2011. 1
-
(2011)
IEEE CVPR
, pp. 473-480
-
-
Duan, L.1
Wu, C.2
Miao, J.3
Qing, L.4
Fu, Y.5
-
6
-
-
84898460288
-
Structure guided salient region detector
-
1
-
S. Fan and F. P. Ferrie. Structure guided salient region detector. In BMVC, 2008. 1
-
(2008)
BMVC
-
-
Fan, S.1
Ferrie, F.P.2
-
8
-
-
84863078680
-
Salient object detection by composition
-
1
-
J. Feng, Y. Wei, L. Tao, C. Zhang, and J. Sun. Salient object detection by composition. In IEEE ICCV, 2011. 1
-
(2011)
IEEE ICCV
-
-
Feng, J.1
Wei, Y.2
Tao, L.3
Zhang, C.4
Sun, J.5
-
9
-
-
45249100930
-
On the plausibility of the discriminant center-surround hypothesis for visual saliency
-
1
-
D. Gao, V. Mahadevan, and N. Vasconcelos. On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision, 8:1-18, 2008. 1
-
(2008)
Journal of Vision
, vol.8
, pp. 1-18
-
-
Gao, D.1
Mahadevan, V.2
Vasconcelos, N.3
-
10
-
-
51949107278
-
Bottom-up saliency is a discriminant process
-
1
-
D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In IEEE ICCV, 2007. 1
-
(2007)
IEEE ICCV
-
-
Gao, D.1
Vasconcelos, N.2
-
12
-
-
70450199650
-
Random walks on graphs to model saliency in images
-
1
-
V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on graphs to model saliency in images. In IEEE CVPR, pages 1698-1705, 2009. 1
-
(2009)
IEEE CVPR
, pp. 1698-1705
-
-
Gopalakrishnan, V.1
Hu, Y.2
Rajan, D.3
-
13
-
-
77949621353
-
What do people look at when they watch stereoscopic movies?
-
2, 3
-
J. Häkkinen, T. Kawai, J. Takatalo, R. Mitsuya, and G. Nyman. What do people look at when they watch stereoscopic movies? In Proc. SPIE 7524, 2010. 2, 3
-
(2010)
Proc. SPIE
, vol.7524
-
-
Häkkinen, J.1
Kawai, T.2
Takatalo, J.3
Mitsuya, R.4
Nyman, G.5
-
14
-
-
84864037603
-
Graph-based visual saliency
-
1, 6
-
J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS, pages 545-552, 2006. 1, 6
-
(2006)
NIPS
, pp. 545-552
-
-
Harel, J.1
Koch, C.2
Perona, P.3
-
15
-
-
35148814949
-
Saliency detection: A spectral residual approach
-
1, 6
-
X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In IEEE CVPR, 2007. 1, 6
-
(2007)
IEEE CVPR
-
-
Hou, X.1
Zhang, L.2
-
16
-
-
45749126005
-
Visual salience
-
1
-
L. Itti. Visual salience. Scholarpedia, 2(9):3327, 2007. 1
-
(2007)
Scholarpedia
, vol.2
, Issue.9
, pp. 3327
-
-
Itti, L.1
-
17
-
-
0035286497
-
Computational modeling of visual attention
-
1
-
L. Itti and C. Koch. Computational modeling of visual attention. Nature reviews neuroscience, 2:194-203, 2001. 1
-
(2001)
Nature Reviews Neuroscience
, vol.2
, pp. 194-203
-
-
Itti, L.1
Koch, C.2
-
18
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
1
-
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20:1254-1259, 1998. 1
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 1254-1259
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
19
-
-
50849127889
-
Segmentation of salient regions in outdoor scenes using imagery and 3-d data
-
1
-
G. Kim, D. Huber, and M. Hebert. Segmentation of salient regions in outdoor scenes using imagery and 3-d data. In IEEE WACV, 2008. 1
-
(2008)
IEEE WACV
-
-
Kim, G.1
Huber, D.2
Hebert, M.3
-
20
-
-
84957695218
-
Contour continuity in region based image segmentation
-
3
-
T. K. Leung and J.Malik. Contour continuity in region based image segmentation. In ECCV, pages 544-559, 1998. 3
-
(1998)
ECCV
, pp. 544-559
-
-
Leung, T.K.1
Malik, J.2
-
21
-
-
79953049203
-
Sift flow: Dense correspondence across scenes and its applications
-
2
-
C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell., 33(5):978-994, 2011. 2
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.5
, pp. 978-994
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
22
-
-
34247588234
-
Region enhanced scale invariant saliency detection
-
1
-
F. Liu and M. Gleicher. Region enhanced scale invariant saliency detection. In IEEE ICME, pages 1477-1480, 2006. 1
-
(2006)
IEEE ICME
, pp. 1477-1480
-
-
Liu, F.1
Gleicher, M.2
-
23
-
-
34948869862
-
Learning to detect a salient object
-
1, 5
-
T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. In IEEE CVPR, 2007. 1, 5
-
(2007)
IEEE CVPR
-
-
Liu, T.1
Sun, J.2
Zheng, N.-N.3
Tang, X.4
Shum, H.-Y.5
-
24
-
-
0033711798
-
On measuring low-level saliency in photographic images
-
1
-
J. Luo and A. Singhal. On measuring low-level saliency in photographic images. In IEEE CVPR, pages 84-89, 2000. 1
-
(2000)
IEEE CVPR
, pp. 84-89
-
-
Luo, J.1
Singhal, A.2
-
25
-
-
2342589340
-
Contrast-based image attention analysis by using fuzzy growing
-
1
-
Y.-F. Ma and H.-J. Zhang. Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia, pages 374-381, 2003. 1
-
(2003)
ACM Multimedia
, pp. 374-381
-
-
Ma, Y.-F.1
Zhang, H.-J.2
-
28
-
-
80052890815
-
Saliency estimation using a non-parametric low-level vision model
-
1
-
N. Murray, M. Vanrell, X. Otazu, and C. Parraga. Saliency estimation using a non-parametric low-level vision model. In IEEE CVPR, pages 433-440, 2011. 1
-
(2011)
IEEE CVPR
, pp. 433-440
-
-
Murray, N.1
Vanrell, M.2
Otazu, X.3
Parraga, C.4
-
29
-
-
0034004665
-
Salience from feature contrast: Additivity across dimensions
-
1
-
H. Nothdurft. Salience from feature contrast: additivity across dimensions. Vision Research, 40(10-12):1183-1201, 2000. 1
-
(2000)
Vision Research
, vol.40
, Issue.10-12
, pp. 1183-1201
-
-
Nothdurft, H.1
-
31
-
-
0037421989
-
Interacting roles of attention and visual salience in v4
-
1
-
J. Reynolds and R. Desimone. Interacting roles of attention and visual salience in v4. Neuron, 37(5):853-863, 2003. 1
-
(2003)
Neuron
, vol.37
, Issue.5
, pp. 853-863
-
-
Reynolds, J.1
Desimone, R.2
-
32
-
-
12844262766
-
GrabCut: Interactive foreground extraction using iterated graph cuts
-
6
-
C. Rother, V. Kolmogorov, and A. Blake. GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph., 23:309-314, 2004. 6
-
(2004)
ACM Trans. Graph.
, vol.23
, pp. 309-314
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
33
-
-
84866703697
-
Learning to form large groups of salient image features
-
1
-
S. Sarkar. Learning to form large groups of salient image features. In IEEE CVPR, 1998. 1
-
(1998)
IEEE CVPR
-
-
Sarkar, S.1
-
34
-
-
0036537472
-
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
-
2
-
D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1):7-42, 2002. 2
-
(2002)
Int. J. Comput. Vision
, vol.47
, Issue.1
, pp. 7-42
-
-
Scharstein, D.1
Szeliski, R.2
-
35
-
-
59049093841
-
Contextual influences on saliency
-
1
-
A. Torralba. Contextual influences on saliency. Neurobiology of attention, pages 586-593, 2005. 1
-
(2005)
Neurobiology of Attention
, pp. 586-593
-
-
Torralba, A.1
-
36
-
-
0018878142
-
A feature-integration theory of attention
-
1
-
A. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive Psychology, 12:97-136, 1980. 1
-
(1980)
Cognitive Psychology
, vol.12
, pp. 97-136
-
-
Treisman, A.1
Gelade, G.2
-
37
-
-
77951941247
-
Image saliency by isocentric curvedness and color
-
1
-
R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and color. In IEEE ICCV, 2009. 1
-
(2009)
IEEE ICCV
-
-
Valenti, R.1
Sebe, N.2
Gevers, T.3
-
38
-
-
80052879376
-
Image-saliency: From intrinsic to extrinsic context
-
1
-
M. Wang, J. Konrad, P. Ishwar, K. Jing, and H. Rowley. Image-saliency: From intrinsic to extrinsic context. In IEEE CVPR, pages 417-424, 2011. 1
-
(2011)
IEEE CVPR
, pp. 417-424
-
-
Wang, M.1
Konrad, J.2
Ishwar, P.3
Jing, K.4
Rowley, H.5
-
39
-
-
84866701940
-
A two-stage approach to saliency detection in images
-
1
-
Z. Wang and B. Li. A two-stage approach to saliency detection in images. In IEEE ICASSP, 2008. 1
-
(2008)
IEEE ICASSP
-
-
Wang, Z.1
Li, B.2
-
40
-
-
2642558848
-
What attributes guide thedeployment of visual attention and how do they do it?
-
1, 2
-
J. M. Wolfe and T. S. Horowitz. What attributes guide thedeployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5:495-501, 2004. 1, 2
-
(2004)
Nature Reviews Neuroscience
, vol.5
, pp. 495-501
-
-
Wolfe, J.M.1
Horowitz, T.S.2
-
41
-
-
34547210110
-
Visual attention detection in videosequences using spatiotemporal cues
-
1
-
Y. Zhai and M. Shah. Visual attention detection in videosequences using spatiotemporal cues. In ACM Multimedia, pages 815-824, 2006. 1
-
(2006)
ACM Multimedia
, pp. 815-824
-
-
Zhai, Y.1
Shah, M.2
|