메뉴 건너뛰기




Volumn , Issue , 2012, Pages 454-461

Leveraging stereopsis for saliency analysis

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; COMFORT ZONE; DATA SETS; DEPTH CUE; DOMAIN KNOWLEDGE; HUMAN VISION SYSTEMS; IMAGE REGIONS; INPUT IMAGE; SALIENCY ANALYSIS; SALIENCY DETECTION; SALIENT OBJECTS; STEREOSCOPIC IMAGE; VISUAL SALIENCY;

EID: 84866702857     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247708     Document Type: Conference Paper
Times cited : (609)

References (41)
  • 1
    • 78650965881 scopus 로고    scopus 로고
    • Frequency-tuned salient region detection
    • 1, 5, 6
    • R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk. Frequency-tuned salient region detection. In IEEE CVPR, pages 1597-1604, 2009. 1, 5, 6
    • (2009) IEEE CVPR , pp. 1597-1604
    • Achanta, R.1    Hemami, S.2    Estrada, F.3    Süsstrunk, S.4
  • 2
    • 84866641785 scopus 로고    scopus 로고
    • Saliency detection using maximum symmetric surround
    • 6
    • R. Achanta and S. Süsstrunk. Saliency detection using maximum symmetric surround. In IEEE ICIP, 2010. 6
    • (2010) IEEE ICIP
    • Achanta, R.1    Süsstrunk, S.2
  • 3
    • 80052948224 scopus 로고    scopus 로고
    • Global contrast based salient region detection
    • 1, 2, 3, 6
    • M. Cheng, G. Zhang, N. J. Mitra, X. Huang, and S. Hu. Global contrast based salient region detection. In IEEE CVPR, pages 409-416, 2011. 1, 2, 3, 6
    • (2011) IEEE CVPR , pp. 409-416
    • Cheng, M.1    Zhang, G.2    Mitra, N.J.3    Huang, X.4    Hu, S.5
  • 4
    • 0043201346 scopus 로고    scopus 로고
    • Inferring region salience from binary and gray-level images
    • 1
    • Y. Cohen and R. Basri. Inferring region salience from binary and gray-level images. Pattern recognition, 36:2349-2362, 2003. 1
    • (2003) Pattern Recognition , vol.36 , pp. 2349-2362
    • Cohen, Y.1    Basri, R.2
  • 5
    • 80052903094 scopus 로고    scopus 로고
    • Visual saliency detection by spatially weighted dissimilarity
    • 1
    • L. Duan, C.Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency detection by spatially weighted dissimilarity. In IEEE CVPR, pages 473-480, 2011. 1
    • (2011) IEEE CVPR , pp. 473-480
    • Duan, L.1    Wu, C.2    Miao, J.3    Qing, L.4    Fu, Y.5
  • 6
    • 84898460288 scopus 로고    scopus 로고
    • Structure guided salient region detector
    • 1
    • S. Fan and F. P. Ferrie. Structure guided salient region detector. In BMVC, 2008. 1
    • (2008) BMVC
    • Fan, S.1    Ferrie, F.P.2
  • 9
    • 45249100930 scopus 로고    scopus 로고
    • On the plausibility of the discriminant center-surround hypothesis for visual saliency
    • 1
    • D. Gao, V. Mahadevan, and N. Vasconcelos. On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision, 8:1-18, 2008. 1
    • (2008) Journal of Vision , vol.8 , pp. 1-18
    • Gao, D.1    Mahadevan, V.2    Vasconcelos, N.3
  • 10
    • 51949107278 scopus 로고    scopus 로고
    • Bottom-up saliency is a discriminant process
    • 1
    • D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In IEEE ICCV, 2007. 1
    • (2007) IEEE ICCV
    • Gao, D.1    Vasconcelos, N.2
  • 12
    • 70450199650 scopus 로고    scopus 로고
    • Random walks on graphs to model saliency in images
    • 1
    • V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on graphs to model saliency in images. In IEEE CVPR, pages 1698-1705, 2009. 1
    • (2009) IEEE CVPR , pp. 1698-1705
    • Gopalakrishnan, V.1    Hu, Y.2    Rajan, D.3
  • 14
    • 84864037603 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • 1, 6
    • J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS, pages 545-552, 2006. 1, 6
    • (2006) NIPS , pp. 545-552
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 15
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • 1, 6
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In IEEE CVPR, 2007. 1, 6
    • (2007) IEEE CVPR
    • Hou, X.1    Zhang, L.2
  • 16
    • 45749126005 scopus 로고    scopus 로고
    • Visual salience
    • 1
    • L. Itti. Visual salience. Scholarpedia, 2(9):3327, 2007. 1
    • (2007) Scholarpedia , vol.2 , Issue.9 , pp. 3327
    • Itti, L.1
  • 17
    • 0035286497 scopus 로고    scopus 로고
    • Computational modeling of visual attention
    • 1
    • L. Itti and C. Koch. Computational modeling of visual attention. Nature reviews neuroscience, 2:194-203, 2001. 1
    • (2001) Nature Reviews Neuroscience , vol.2 , pp. 194-203
    • Itti, L.1    Koch, C.2
  • 18
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • 1
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20:1254-1259, 1998. 1
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 19
    • 50849127889 scopus 로고    scopus 로고
    • Segmentation of salient regions in outdoor scenes using imagery and 3-d data
    • 1
    • G. Kim, D. Huber, and M. Hebert. Segmentation of salient regions in outdoor scenes using imagery and 3-d data. In IEEE WACV, 2008. 1
    • (2008) IEEE WACV
    • Kim, G.1    Huber, D.2    Hebert, M.3
  • 20
    • 84957695218 scopus 로고    scopus 로고
    • Contour continuity in region based image segmentation
    • 3
    • T. K. Leung and J.Malik. Contour continuity in region based image segmentation. In ECCV, pages 544-559, 1998. 3
    • (1998) ECCV , pp. 544-559
    • Leung, T.K.1    Malik, J.2
  • 21
    • 79953049203 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • 2
    • C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell., 33(5):978-994, 2011. 2
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 978-994
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 22
    • 34247588234 scopus 로고    scopus 로고
    • Region enhanced scale invariant saliency detection
    • 1
    • F. Liu and M. Gleicher. Region enhanced scale invariant saliency detection. In IEEE ICME, pages 1477-1480, 2006. 1
    • (2006) IEEE ICME , pp. 1477-1480
    • Liu, F.1    Gleicher, M.2
  • 24
    • 0033711798 scopus 로고    scopus 로고
    • On measuring low-level saliency in photographic images
    • 1
    • J. Luo and A. Singhal. On measuring low-level saliency in photographic images. In IEEE CVPR, pages 84-89, 2000. 1
    • (2000) IEEE CVPR , pp. 84-89
    • Luo, J.1    Singhal, A.2
  • 25
    • 2342589340 scopus 로고    scopus 로고
    • Contrast-based image attention analysis by using fuzzy growing
    • 1
    • Y.-F. Ma and H.-J. Zhang. Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia, pages 374-381, 2003. 1
    • (2003) ACM Multimedia , pp. 374-381
    • Ma, Y.-F.1    Zhang, H.-J.2
  • 28
    • 80052890815 scopus 로고    scopus 로고
    • Saliency estimation using a non-parametric low-level vision model
    • 1
    • N. Murray, M. Vanrell, X. Otazu, and C. Parraga. Saliency estimation using a non-parametric low-level vision model. In IEEE CVPR, pages 433-440, 2011. 1
    • (2011) IEEE CVPR , pp. 433-440
    • Murray, N.1    Vanrell, M.2    Otazu, X.3    Parraga, C.4
  • 29
    • 0034004665 scopus 로고    scopus 로고
    • Salience from feature contrast: Additivity across dimensions
    • 1
    • H. Nothdurft. Salience from feature contrast: additivity across dimensions. Vision Research, 40(10-12):1183-1201, 2000. 1
    • (2000) Vision Research , vol.40 , Issue.10-12 , pp. 1183-1201
    • Nothdurft, H.1
  • 31
    • 0037421989 scopus 로고    scopus 로고
    • Interacting roles of attention and visual salience in v4
    • 1
    • J. Reynolds and R. Desimone. Interacting roles of attention and visual salience in v4. Neuron, 37(5):853-863, 2003. 1
    • (2003) Neuron , vol.37 , Issue.5 , pp. 853-863
    • Reynolds, J.1    Desimone, R.2
  • 32
    • 12844262766 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • 6
    • C. Rother, V. Kolmogorov, and A. Blake. GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph., 23:309-314, 2004. 6
    • (2004) ACM Trans. Graph. , vol.23 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 33
    • 84866703697 scopus 로고    scopus 로고
    • Learning to form large groups of salient image features
    • 1
    • S. Sarkar. Learning to form large groups of salient image features. In IEEE CVPR, 1998. 1
    • (1998) IEEE CVPR
    • Sarkar, S.1
  • 34
    • 0036537472 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
    • 2
    • D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1):7-42, 2002. 2
    • (2002) Int. J. Comput. Vision , vol.47 , Issue.1 , pp. 7-42
    • Scharstein, D.1    Szeliski, R.2
  • 35
    • 59049093841 scopus 로고    scopus 로고
    • Contextual influences on saliency
    • 1
    • A. Torralba. Contextual influences on saliency. Neurobiology of attention, pages 586-593, 2005. 1
    • (2005) Neurobiology of Attention , pp. 586-593
    • Torralba, A.1
  • 36
    • 0018878142 scopus 로고
    • A feature-integration theory of attention
    • 1
    • A. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive Psychology, 12:97-136, 1980. 1
    • (1980) Cognitive Psychology , vol.12 , pp. 97-136
    • Treisman, A.1    Gelade, G.2
  • 37
    • 77951941247 scopus 로고    scopus 로고
    • Image saliency by isocentric curvedness and color
    • 1
    • R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and color. In IEEE ICCV, 2009. 1
    • (2009) IEEE ICCV
    • Valenti, R.1    Sebe, N.2    Gevers, T.3
  • 38
    • 80052879376 scopus 로고    scopus 로고
    • Image-saliency: From intrinsic to extrinsic context
    • 1
    • M. Wang, J. Konrad, P. Ishwar, K. Jing, and H. Rowley. Image-saliency: From intrinsic to extrinsic context. In IEEE CVPR, pages 417-424, 2011. 1
    • (2011) IEEE CVPR , pp. 417-424
    • Wang, M.1    Konrad, J.2    Ishwar, P.3    Jing, K.4    Rowley, H.5
  • 39
    • 84866701940 scopus 로고    scopus 로고
    • A two-stage approach to saliency detection in images
    • 1
    • Z. Wang and B. Li. A two-stage approach to saliency detection in images. In IEEE ICASSP, 2008. 1
    • (2008) IEEE ICASSP
    • Wang, Z.1    Li, B.2
  • 40
    • 2642558848 scopus 로고    scopus 로고
    • What attributes guide thedeployment of visual attention and how do they do it?
    • 1, 2
    • J. M. Wolfe and T. S. Horowitz. What attributes guide thedeployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5:495-501, 2004. 1, 2
    • (2004) Nature Reviews Neuroscience , vol.5 , pp. 495-501
    • Wolfe, J.M.1    Horowitz, T.S.2
  • 41
    • 34547210110 scopus 로고    scopus 로고
    • Visual attention detection in videosequences using spatiotemporal cues
    • 1
    • Y. Zhai and M. Shah. Visual attention detection in videosequences using spatiotemporal cues. In ACM Multimedia, pages 815-824, 2006. 1
    • (2006) ACM Multimedia , pp. 815-824
    • Zhai, Y.1    Shah, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.