메뉴 건너뛰기




Volumn , Issue , 2014, Pages 256-263

MILCut: A sweeping line multiple instance learning paradigm for interactive image segmentation

Author keywords

bounding box prior; interactive image segmentation; multiple instance learning

Indexed keywords

COMPUTER VISION; LEARNING SYSTEMS; MEDICAL IMAGING;

EID: 84911451328     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.40     Document Type: Conference Paper
Times cited : (141)

References (44)
  • 1
    • 84866657764 scopus 로고    scopus 로고
    • Slic superpixels compared to state-of-the-art superpixel methods
    • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels compared to state-of-the-art superpixel methods. TPAMI, 34(11):2274-2282, 2012.
    • (2012) TPAMI , vol.34 , Issue.11 , pp. 2274-2282
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Susstrunk, S.6
  • 2
    • 0028444401 scopus 로고
    • Seeded region growing
    • R. Adams and L. Bischof. Seeded region growing. TPAMI, 16(6):641-647, 1994.
    • (1994) TPAMI , vol.16 , Issue.6 , pp. 641-647
    • Adams, R.1    Bischof, L.2
  • 3
    • 34948898079 scopus 로고    scopus 로고
    • Image segmentation by probabilistic bottom-up aggregation and cue integration
    • S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic bottom-up aggregation and cue integration. In CVPR, 2007.
    • (2007) CVPR
    • Alpert, S.1    Galun, M.2    Basri, R.3    Brandt, A.4
  • 4
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002.
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 5
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 7
    • 70350725148 scopus 로고    scopus 로고
    • What is a good image segment? a unified approach to segment extraction
    • S. Bagon, O. Boiman, and M. Irani. What is a good image segment? a unified approach to segment extraction. In ECCV, 2008.
    • (2008) ECCV
    • Bagon, S.1    Boiman, O.2    Irani, M.3
  • 8
    • 60349125653 scopus 로고    scopus 로고
    • Geodesic matting: A framework for fast interactive image and video segmentation and matting
    • X. Bai and G. Sapiro. Geodesic matting: A framework for fast interactive image and video segmentation and matting. IJCV, 82(2):113-132, 2009.
    • (2009) IJCV , vol.82 , Issue.2 , pp. 113-132
    • Bai, X.1    Sapiro, G.2
  • 9
    • 35048899665 scopus 로고    scopus 로고
    • Interactive image segmentation using an adaptive gmmrf model
    • A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmentation using an adaptive gmmrf model. In ECCV, pages 428-441, 2004.
    • (2004) ECCV , pp. 428-441
    • Blake, A.1    Rother, C.2    Brown, M.3    Perez, P.4    Torr, P.5
  • 10
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in nd images
    • Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In ICCV, 2001.
    • (2001) ICCV
    • Boykov, Y.1    Jolly, M.-P.2
  • 11
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. TPAMI, 24(5):603-619, 2002.
    • (2002) TPAMI , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 12
    • 77956555219 scopus 로고    scopus 로고
    • A conditional random field for multiple-instance learning
    • T. Deselaers and V. Ferrari. A conditional random field for multiple-instance learning. In ICML, 2010.
    • (2010) ICML
    • Deselaers, T.1    Ferrari, V.2
  • 13
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):31-71, 1997.
    • (1997) Artificial Intelligence , vol.89 , Issue.1 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 15
    • 33745128094 scopus 로고    scopus 로고
    • Interactive graph cut based segmentation with shape priors
    • D. Freedman and T. Zhang. Interactive graph cut based segmentation with shape priors. In CVPR, 2005.
    • (2005) CVPR
    • Freedman, D.1    Zhang, T.2
  • 16
    • 84911418553 scopus 로고    scopus 로고
    • Siox: Simple interactive object extraction in still images
    • G. Friedland, K. Jantz, and R. Rojas. Siox: Simple interactive object extraction in still images. In ACM Multimedia, 2005.
    • (2005) ACM Multimedia
    • Friedland, G.1    Jantz, K.2    Rojas, R.3
  • 17
    • 0344982828 scopus 로고    scopus 로고
    • Texture segmentation by multiscale aggregation of filter responses and shape elements
    • M. Galun, E. Sharon, R. Basri, and A. Brandt. Texture segmentation by multiscale aggregation of filter responses and shape elements. In ICCV, pages 716-723, 2003.
    • (2003) ICCV , pp. 716-723
    • Galun, M.1    Sharon, E.2    Basri, R.3    Brandt, A.4
  • 18
    • 33846207510 scopus 로고    scopus 로고
    • Random walks for image segmentation
    • L. Grady. Random walks for image segmentation. TPAMI, 28(11):1768-1783, 2006.
    • (2006) TPAMI , vol.28 , Issue.11 , pp. 1768-1783
    • Grady, L.1
  • 21
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV, 43(1):29-44, 2001.
    • (2001) IJCV , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 23
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In NIPS, 1998.
    • (1998) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 24
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 25
    • 0000034034 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent in function space. In NIPS, 1999.
    • (1999) NIPS
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 26
    • 70349326275 scopus 로고    scopus 로고
    • A comparative evaluation of interactive segmentation algorithms
    • K. McGuinness and N. E. O'Connor. A comparative evaluation of interactive segmentation algorithms. Pattern Recognition, 43(2):434-444, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.2 , pp. 434-444
    • McGuinness, K.1    O'Connor, N.E.2
  • 28
    • 77955996868 scopus 로고    scopus 로고
    • Geodesic graph cut for interactive image segmentation
    • B. L. Price, B. Morse, and S. Cohen. Geodesic graph cut for interactive image segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Price, B.L.1    Morse, B.2    Cohen, S.3
  • 29
    • 34047232260 scopus 로고    scopus 로고
    • Interactive image segmentation via adaptive weighted distances
    • A. Protiere and G. Sapiro. Interactive image segmentation via adaptive weighted distances. TIP, 16(4):1046-1057, 2007.
    • (2007) TIP , vol.16 , Issue.4 , pp. 1046-1057
    • Protiere, A.1    Sapiro, G.2
  • 31
    • 0345414167 scopus 로고    scopus 로고
    • Learning a classification model for segmentation
    • X. Ren and J. Malik. Learning a classification model for segmentation. In ICCV, 2003.
    • (2003) ICCV
    • Ren, X.1    Malik, J.2
  • 32
    • 84877632511 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3):309-314, 2004.
    • (2004) ACM Transactions on Graphics , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 33
    • 0033886791 scopus 로고    scopus 로고
    • Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval
    • P. Salembier and L. Garrido. Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. TIP, 9(4):561-576, 2000.
    • (2000) TIP , vol.9 , Issue.4 , pp. 561-576
    • Salembier, P.1    Garrido, L.2
  • 34
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 22(8):888-905, 2000.
    • (2000) TPAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 35
    • 51949090071 scopus 로고    scopus 로고
    • Graph cut based image segmentation with connectivity priors
    • S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with connectivity priors. In CVPR, 2008.
    • (2008) CVPR
    • Vicente, S.1    Kolmogorov, V.2    Rother, C.3
  • 36
    • 45549083257 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • P. Viola, J. Platt, C. Zhang, et al. Multiple instance boosting for object detection. In NIPS, 2006.
    • (2006) NIPS
    • Viola, P.1    Platt, J.2    Zhang, C.3
  • 37
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • J. Wang and J.-D. Zucker. Solving the multiple-instance problem: A lazy learning approach. In ICML, 2000.
    • (2000) ICML
    • Wang, J.1    Zucker, J.-D.2
  • 38
    • 84896123432 scopus 로고    scopus 로고
    • Weakly supervised histopathology cancer image segmentation and classification
    • Y. Xu, J.-Y. Zhu, E. I. Chang, M. Lai, and Z. Tu. Weakly supervised histopathology cancer image segmentation and classification. MIA, 18(3):591-604, 2014.
    • (2014) MIA , vol.18 , Issue.3 , pp. 591-604
    • Xu, Y.1    Zhu, J.-Y.2    Chang, E.I.3    Lai, M.4    Tu, Z.5
  • 39
    • 77955797087 scopus 로고    scopus 로고
    • User-friendly interactive image segmentation through unified combinatorial user inputs
    • W. Yang, J. Cai, J. Zheng, and J. Luo. User-friendly interactive image segmentation through unified combinatorial user inputs. TIP, 19(9):2470-2479, 2010.
    • (2010) TIP , vol.19 , Issue.9 , pp. 2470-2479
    • Yang, W.1    Cai, J.2    Zheng, J.3    Luo, J.4
  • 40
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.-N.J.1    Joachims, T.2
  • 42
    • 0012349465 scopus 로고    scopus 로고
    • Em-dd: An improved multiple-instance learning technique
    • Q. Zhang and S. A. Goldman. Em-dd: An improved multiple-instance learning technique. In NIPS, 2001.
    • (2001) NIPS
    • Zhang, Q.1    Goldman, S.A.2
  • 43
    • 78650996683 scopus 로고    scopus 로고
    • Co3 for ultra-fast and accurate interactive segmentation
    • Y. Zhao, S.-C. Zhu, and S. Luo. Co3 for ultra-fast and accurate interactive segmentation. In ACM Multimedia, 2010.
    • (2010) ACM Multimedia
    • Zhao, Y.1    Zhu, S.-C.2    Luo, S.3
  • 44
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-iid samples
    • Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning by treating instances as non-iid samples. In ICML, 2009.
    • (2009) ICML
    • Zhou, Z.-H.1    Sun, Y.-Y.2    Li, Y.-F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.