메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 287-295

Delving into egocentric actions

Author keywords

[No Author keywords available]

Indexed keywords

CAMERAS; COMPUTER VISION;

EID: 84959189278     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298625     Document Type: Conference Paper
Times cited : (311)

References (37)
  • 1
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis: A review
    • Apr
    • J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Comput. Surv., 43(3):16:1-16:43, Apr. 2011
    • (2011) ACM Comput. Surv. , vol.43 , Issue.3 , pp. 161-1643
    • Aggarwal, J.1    Ryoo, M.2
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 4
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. In ECCV, 2006
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 6
    • 84856655308 scopus 로고    scopus 로고
    • Understanding egocentric activities
    • A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocentric activities. In ICCV, pages 407-414, 2011
    • (2011) ICCV , pp. 407-414
    • Fathi, A.1    Farhadi, A.2    Rehg, J.M.3
  • 7
    • 84881506730 scopus 로고    scopus 로고
    • Learning to recognize daily actions using gaze
    • A. Fathi, Y. Li, and J. M. Rehg. Learning to recognize daily actions using gaze. In ECCV. 2012
    • (2012) ECCV
    • Fathi, A.1    Li, Y.2    Rehg, J.M.3
  • 8
    • 51949109604 scopus 로고    scopus 로고
    • Action recognition by learning midlevel motion features
    • A. Fathi and G. Mori. Action recognition by learning midlevel motion features. In CVPR, 2008
    • (2008) CVPR
    • Fathi, A.1    Mori, G.2
  • 9
    • 84887336656 scopus 로고    scopus 로고
    • Modeling actions through state changes
    • A. Fathi and J. M. Rehg. Modeling actions through state changes. In CVPR, 2013
    • (2013) CVPR
    • Fathi, A.1    Rehg, J.M.2
  • 10
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, 1981
    • (1981) Communications of the ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 11
    • 84887337772 scopus 로고    scopus 로고
    • Representing videos using mid-level discriminative patches
    • A. Jain, A. Gupta, M. Rodriguez, and L. Davis. Representing videos using mid-level discriminative patches. In CVPR, 2013
    • (2013) CVPR
    • Jain, A.1    Gupta, A.2    Rodriguez, M.3    Davis, L.4
  • 12
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013
    • (2013) CVPR
    • Jain, M.1    Jegou, H.2    Bouthemy, P.3
  • 15
    • 80052870292 scopus 로고    scopus 로고
    • Fast unsupervised ego-action learning for first-person sports videos
    • K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast unsupervised ego-action learning for first-person sports videos. In CVPR, 2011
    • (2011) CVPR
    • Kitani, K.M.1    Okabe, T.2    Sato, Y.3    Sugimoto, A.4
  • 17
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with fisher vectors for image categorization
    • J. Krapac, J. Verbeek, and F. Jurie. Modeling spatial layout with fisher vectors for image categorization. In ICCV, 2011
    • (2011) ICCV
    • Krapac, J.1    Verbeek, J.2    Jurie, F.3
  • 18
    • 0035189421 scopus 로고    scopus 로고
    • What ways do eye movements contribute to everyday activities
    • M. F. Land and M. Hayhoe. In what ways do eye movements contribute to everyday activities? Vision Research, 41(25-26):3559-3565, 2001
    • (2001) Vision Research , vol.41 , Issue.25-26 , pp. 3559-3565
    • Land, M.F.1    Hayhoe, M.2
  • 19
  • 20
    • 84866723224 scopus 로고    scopus 로고
    • Discovering important people and objects for egocentric video summarization
    • Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects for egocentric video summarization. In CVPR, 2012
    • (2012) CVPR
    • Lee, Y.J.1    Ghosh, J.2    Grauman, K.3
  • 21
    • 84898792624 scopus 로고    scopus 로고
    • Model recommendation with virtual probes for egocentric hand detection
    • C. Li and K. M. Kitani. Model recommendation with virtual probes for egocentric hand detection. In ICCV, 2013
    • (2013) ICCV
    • Li, C.1    Kitani, K.M.2
  • 22
    • 84898812374 scopus 로고    scopus 로고
    • Learning to predict gaze in egocentric video
    • Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in egocentric video. In ICCV, 2013
    • (2013) ICCV
    • Li, Y.1    Fathi, A.2    Rehg, J.M.3
  • 23
    • 84893353862 scopus 로고    scopus 로고
    • Dynamic eye movement datasets and learnt saliency models for visual action recognition
    • S. Mathe and C. Sminchisescu. Dynamic eye movement datasets and learnt saliency models for visual action recognition. In ECCV. 2012
    • (2012) ECCV
    • Mathe, S.1    Sminchisescu, C.2
  • 24
    • 84898791167 scopus 로고    scopus 로고
    • Action and event recognition with fisher vectors on a compact feature set
    • D. Oneata, J. Verbeek, and C. Schmid. Action and event recognition with fisher vectors on a compact feature set. In ICCV, 2013
    • (2013) ICCV
    • Oneata, D.1    Verbeek, J.2    Schmid, C.3
  • 25
    • 84887328711 scopus 로고    scopus 로고
    • Exploring weak stabilization for motion feature extraction
    • D. Park, C. L. Zitnick, D. Ramanan, and P. Dollar. Exploring weak stabilization for motion feature extraction. In CVPR, 2013
    • (2013) CVPR
    • Park, D.1    Zitnick, C.L.2    Ramanan, D.3    Dollar, P.4
  • 26
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV. 2010
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 27
    • 84866652986 scopus 로고    scopus 로고
    • Detecting activities of daily living in first-person camera views
    • H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person camera views. In CVPR, 2012
    • (2012) CVPR
    • Pirsiavash, H.1    Ramanan, D.2
  • 28
    • 84866661728 scopus 로고    scopus 로고
    • Discovering discriminative action parts from mid-level video representations
    • M. Raptis, I. Kokkinos, and S. Soatto. Discovering discriminative action parts from mid-level video representations. In CVPR, 2012
    • (2012) CVPR
    • Raptis, M.1    Kokkinos, I.2    Soatto, S.3
  • 29
    • 77955991434 scopus 로고    scopus 로고
    • Figure-ground segmentation improves handled object recognition in egocentric video
    • X. Ren and C. Gu. Figure-ground segmentation improves handled object recognition in egocentric video. In CVPR, 2010
    • (2010) CVPR
    • Ren, X.1    Gu, C.2
  • 31
    • 84887376594 scopus 로고    scopus 로고
    • First-person activity recognition: What are they doing to me
    • M. S. Ryoo and L. Matthies. First-person activity recognition: What are they doing to me? In CVPR, 2013
    • (2013) CVPR
    • Ryoo, M.S.1    Matthies, L.2
  • 32
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 81(1):2-23, 2009
    • (2009) International Journal of Computer Vision , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 34
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • Y. Tian, R. sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 37
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.