-
1
-
-
84859007767
-
Pathogenesis of membranous nephropathy: recent advances and future challenges
-
Ronco P., Debiec H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat. Rev. Nephrol. 2012, 8:203-213.
-
(2012)
Nat. Rev. Nephrol.
, vol.8
, pp. 203-213
-
-
Ronco, P.1
Debiec, H.2
-
2
-
-
84873025518
-
Podocyte biology and pathogenesis of kidney disease
-
Reiser J., Sever S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med. 2013, 64:357-366.
-
(2013)
Annu. Rev. Med.
, vol.64
, pp. 357-366
-
-
Reiser, J.1
Sever, S.2
-
4
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
5
-
-
84876117324
-
Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury
-
Fang L., Zhou Y., Cao H., Wen P., Jiang L., He W., Dai C., Yang J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One 2013, 8:e60546.
-
(2013)
PLoS One
, vol.8
, pp. e60546
-
-
Fang, L.1
Zhou, Y.2
Cao, H.3
Wen, P.4
Jiang, L.5
He, W.6
Dai, C.7
Yang, J.8
-
6
-
-
84862681018
-
Autophagy can repair endoplasmic reticulum stress damage of the passive Heymann nephritis as revealed by proteomics analysis
-
Wang L., Hong Q., Lv Y., Feng Z., Zhang X., Wu L., Cui S., Su H., Huang Z., Wu D., Chen X. Autophagy can repair endoplasmic reticulum stress damage of the passive Heymann nephritis as revealed by proteomics analysis. J. Proteom. 2012, 75:3866-3876.
-
(2012)
J. Proteom.
, vol.75
, pp. 3866-3876
-
-
Wang, L.1
Hong, Q.2
Lv, Y.3
Feng, Z.4
Zhang, X.5
Wu, L.6
Cui, S.7
Su, H.8
Huang, Z.9
Wu, D.10
Chen, X.11
-
7
-
-
84939620527
-
Protective role of cyclosporine A and minocycline on mitochondrial disequilibrium-related podocyte injury and proteinuria occurrence induced by adriamycin
-
Guan N., Ren Y.L., Liu X.Y., Zhang Y., Pei P., Zhu S.N., Fan Q. Protective role of cyclosporine A and minocycline on mitochondrial disequilibrium-related podocyte injury and proteinuria occurrence induced by adriamycin. Nephrol. Dial. Transplant. 2015, 30:957-969.
-
(2015)
Nephrol. Dial. Transplant.
, vol.30
, pp. 957-969
-
-
Guan, N.1
Ren, Y.L.2
Liu, X.Y.3
Zhang, Y.4
Pei, P.5
Zhu, S.N.6
Fan, Q.7
-
8
-
-
80053056035
-
Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis
-
Meyer-Schwesinger C., Dehde S., Klug P., Becker J.U., Mathey S., Arefi K., Balabanov S., Venz S., Endlich K.H., Pekna M., Gessner J.E., Thaiss F., Meyer T.N. Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis. J. Immunol. 2011, 187:3218-3229.
-
(2011)
J. Immunol.
, vol.187
, pp. 3218-3229
-
-
Meyer-Schwesinger, C.1
Dehde, S.2
Klug, P.3
Becker, J.U.4
Mathey, S.5
Arefi, K.6
Balabanov, S.7
Venz, S.8
Endlich, K.H.9
Pekna, M.10
Gessner, J.E.11
Thaiss, F.12
Meyer, T.N.13
-
9
-
-
80052027910
-
Ginsenoside-Rg1 protects podocytes from complement mediated injury
-
Zhang M.H., Fan J.M., Xie X.S., Deng Y.Y., Chen Y.P., Zhen R., Li J., Cheng Y., Wen J. Ginsenoside-Rg1 protects podocytes from complement mediated injury. J. Ethnopharmacol. 2011, 137:99-107.
-
(2011)
J. Ethnopharmacol.
, vol.137
, pp. 99-107
-
-
Zhang, M.H.1
Fan, J.M.2
Xie, X.S.3
Deng, Y.Y.4
Chen, Y.P.5
Zhen, R.6
Li, J.7
Cheng, Y.8
Wen, J.9
-
10
-
-
84880133893
-
The use of electron microscopy for the detection of autophagy in human atherosclerosis
-
Perrotta I. The use of electron microscopy for the detection of autophagy in human atherosclerosis. Micron 2013, 50:7-13.
-
(2013)
Micron
, vol.50
, pp. 7-13
-
-
Perrotta, I.1
-
11
-
-
33847001656
-
Alpha-actinin-4 is required for normal podocyte adhesion
-
Dandapani S.V., Sugimoto H., Matthews B.D., Kolb R.J., Sinha S., Gerszten R.E., Zhou J., Ingber D.E., Kalluri R., Pollak M.R. Alpha-actinin-4 is required for normal podocyte adhesion. J. Biol. Chem. 2007, 282:467-477.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 467-477
-
-
Dandapani, S.V.1
Sugimoto, H.2
Matthews, B.D.3
Kolb, R.J.4
Sinha, S.5
Gerszten, R.E.6
Zhou, J.7
Ingber, D.E.8
Kalluri, R.9
Pollak, M.R.10
-
12
-
-
84919713406
-
A role for TOR complex 2 signaling in promoting autophagy
-
Vlahakis A., Powers T. A role for TOR complex 2 signaling in promoting autophagy. Autophagy 2014, 10:2085-2086.
-
(2014)
Autophagy
, vol.10
, pp. 2085-2086
-
-
Vlahakis, A.1
Powers, T.2
-
13
-
-
84891162889
-
Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes
-
Xiong J., Xia M., Xu M., Zhang Y., Abais J.M., Li G., Riebling C.R., Ritter J.K., Boini K.M., Li P.L. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes. J. Cell. Mol. Med. 2013, 17:1598-1607.
-
(2013)
J. Cell. Mol. Med.
, vol.17
, pp. 1598-1607
-
-
Xiong, J.1
Xia, M.2
Xu, M.3
Zhang, Y.4
Abais, J.M.5
Li, G.6
Riebling, C.R.7
Ritter, J.K.8
Boini, K.M.9
Li, P.L.10
-
14
-
-
68049104247
-
Autophagy: molecular machinery, regulation, and implications for renal pathophysiology
-
Periyasamy-Thandavan S., Jiang M., Schoenlein P., Dong Z. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Ren. Physiol. 2009, 297:F244-F256.
-
(2009)
Am. J. Physiol. Ren. Physiol.
, vol.297
, pp. F244-F256
-
-
Periyasamy-Thandavan, S.1
Jiang, M.2
Schoenlein, P.3
Dong, Z.4
-
15
-
-
74449085963
-
Endoplasmic reticulum stressin proteinuric kidney disease
-
Cybulsky A.V. Endoplasmic reticulum stressin proteinuric kidney disease. Kidney Int. 2010, 77:187-193.
-
(2010)
Kidney Int.
, vol.77
, pp. 187-193
-
-
Cybulsky, A.V.1
-
16
-
-
84862806054
-
Survival and death of endoplasmic-reticulum-stressed cells: role of autophagy
-
Cheng Y., Yang J.M. Survival and death of endoplasmic-reticulum-stressed cells: role of autophagy. World J. Biol. Chem. 2011, 2:226-231.
-
(2011)
World J. Biol. Chem.
, vol.2
, pp. 226-231
-
-
Cheng, Y.1
Yang, J.M.2
-
17
-
-
77951169411
-
Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
-
Hartleben B., Gödel M., Meyer-Schwesinger C., Liu S., Ulrich T., Köbler S., Wiech T., Grahammer F., Arnold S.J., Lindenmeyer M.T., Cohen C.D., Pavenstädt H., Kerjaschki D., Mizushima N., Shaw A.S., Walz G., Huber T.B. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Investig. 2010, 120:1084-1096.
-
(2010)
J. Clin. Investig.
, vol.120
, pp. 1084-1096
-
-
Hartleben, B.1
Gödel, M.2
Meyer-Schwesinger, C.3
Liu, S.4
Ulrich, T.5
Köbler, S.6
Wiech, T.7
Grahammer, F.8
Arnold, S.J.9
Lindenmeyer, M.T.10
Cohen, C.D.11
Pavenstädt, H.12
Kerjaschki, D.13
Mizushima, N.14
Shaw, A.S.15
Walz, G.16
Huber, T.B.17
-
18
-
-
0038718698
-
MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis
-
Asanuma K., Tanida I., Shirato I., Ueno T., Takahara H., Nishitani T., Kominami E., Tomino Y. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 2003, 17:1165-1167.
-
(2003)
FASEB J.
, vol.17
, pp. 1165-1167
-
-
Asanuma, K.1
Tanida, I.2
Shirato, I.3
Ueno, T.4
Takahara, H.5
Nishitani, T.6
Kominami, E.7
Tomino, Y.8
-
19
-
-
79957927211
-
MTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice
-
Inoki K., Mori H., Wang J., Suzuki T., Hong S., Yoshida S., Blattner S.M., Ikenoue T., Rüegg M.A., Hall M.N., Kwiatkowski D.J., Rastaldi M.P., Huber T.B., Kretzler M., Holzman L.B., Wiggins R.C., Guan K.L. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Investig. 2011, 121:2181-2196.
-
(2011)
J. Clin. Investig.
, vol.121
, pp. 2181-2196
-
-
Inoki, K.1
Mori, H.2
Wang, J.3
Suzuki, T.4
Hong, S.5
Yoshida, S.6
Blattner, S.M.7
Ikenoue, T.8
Rüegg, M.A.9
Hall, M.N.10
Kwiatkowski, D.J.11
Rastaldi, M.P.12
Huber, T.B.13
Kretzler, M.14
Holzman, L.B.15
Wiggins, R.C.16
Guan, K.L.17
-
20
-
-
84877253052
-
Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury
-
Wu L., Feng Z., Cui S., Hou K., Tang L., Zhou J., Cai G., Xie Y., Hong Q., Fu B., Chen X. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One 2013, 8:e63799.
-
(2013)
PLoS One
, vol.8
, pp. e63799
-
-
Wu, L.1
Feng, Z.2
Cui, S.3
Hou, K.4
Tang, L.5
Zhou, J.6
Cai, G.7
Xie, Y.8
Hong, Q.9
Fu, B.10
Chen, X.11
-
21
-
-
84863323742
-
Mammalian target of rapamycin and the kidney. I. The signaling pathway
-
Lieberthal W., Levine J.S. Mammalian target of rapamycin and the kidney. I. The signaling pathway. Am. J. Physiol. Ren. Physiol. 2012, 303:F1-F10.
-
(2012)
Am. J. Physiol. Ren. Physiol.
, vol.303
, pp. F1-F10
-
-
Lieberthal, W.1
Levine, J.S.2
-
22
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina J.A., Chen Y., Gucek M., Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8:903-914.
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
|