-
1
-
-
84908325271
-
Artificial sweeteners induce glucose intolerance by altering the gut microbiota
-
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514: 181–6. doi: 10.1038/nature13793 25231862
-
(2014)
Nature
, vol.514
, pp. 181-186
-
-
Suez, J.1
Korem, T.2
Zeevi, D.3
Zilberman-Schapira, G.4
Thaiss, C.A.5
Maza, O.6
-
2
-
-
84905716750
-
Blowing on embers: commensal microbiota and our immune system
-
Spasova DS, Surh CD, Blowing on embers: commensal microbiota and our immune system. Front Immunol. 2014;5: 318. doi: 10.3389/fimmu.2014.00318 25120539
-
(2014)
Front Immunol
, vol.5
, pp. 318
-
-
Spasova, D.S.1
Surh, C.D.2
-
3
-
-
84899676296
-
Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus
-
Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI, Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5: 190. doi: 10.3389/fmicb.2014.00190 24808896
-
(2014)
Front Microbiol
, vol.5
, pp. 190
-
-
Moreno-Indias, I.1
Cardona, F.2
Tinahones, F.J.3
Queipo-Ortuño, M.I.4
-
4
-
-
0015935016
-
Adverse Effect of Lomotil Therapy in Shigellosis
-
DuPont HL, Adverse Effect of Lomotil Therapy in Shigellosis. JAMA J Am Med Assoc. American Medical Association; 1973;226: 1525. doi: 10.1001/jama.1973.03230130013006
-
(1973)
JAMA J Am Med Assoc
, vol.226
, pp. 1525
-
-
DuPont, H.L.1
-
5
-
-
84885747168
-
How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut-microbe interactions
-
Lee W- J, Brey PT, How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut-microbe interactions. Annu Rev Cell Dev Biol. 2013;29: 571–92. doi: 10.1146/annurev-cellbio-101512-122333 23808845
-
(2013)
Annu Rev Cell Dev Biol
, vol.29
, pp. 571-592
-
-
Lee W-, J.1
Brey, P.T.2
-
6
-
-
84900537629
-
Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions
-
Kim S-H, Lee W-J, Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol. 2014;3: 116. doi: 10.3389/fcimb.2013.00116 24455491
-
(2014)
Front Cell Infect Microbiol
, vol.3
, pp. 116
-
-
Kim, S.-H.1
Lee, W.-J.2
-
7
-
-
60649091298
-
Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation
-
Buchon N, Broderick N a, Poidevin M, Pradervand S, Lemaitre B, Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe. Elsevier Ltd; 2009;5: 200–11. doi: 10.1016/j.chom.2009.01.003
-
(2009)
Cell Host Microbe. Elsevier Ltd
, vol.5
, pp. 200-211
-
-
Buchon, N.1
Broderick, N.2
Poidevin, M.3
Pradervand, S.4
Lemaitre, B.5
-
8
-
-
84877723813
-
Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila
-
Lee K-A, Kim S-H, Kim E-K, Ha E-M, You H, Kim B, et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell. Elsevier Inc.; 2013;153: 797–811. doi: 10.1016/j.cell.2013.04.009
-
(2013)
Cell. Elsevier Inc.
, vol.153
, pp. 797-811
-
-
Lee, K.-A.1
Kim, S.-H.2
Kim, E.-K.3
Ha, E.-M.4
You, H.5
Kim, B.6
-
9
-
-
61749104447
-
Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity
-
Ha E-M, Lee K-A, Park SH, Kim S-H, Nam H-J, Lee H-Y, et al. Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell. 2009;16: 386–97. doi: 10.1016/j.devcel.2008.12.015 19289084
-
(2009)
Dev Cell
, vol.16
, pp. 386-397
-
-
Ha, E.-M.1
Lee, K.-A.2
Park, S.H.3
Kim, S.-H.4
Nam, H.-J.5
Lee, H.-Y.6
-
10
-
-
69049088645
-
Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut
-
Ha E-M, Lee K-A, Seo YY, Kim S-H, Lim J-H, Oh B-H, et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol. Nature Publishing Group; 2009;10: 949–57. doi: 10.1038/ni.1765
-
(2009)
Nat Immunol. Nature Publishing Group
, vol.10
, pp. 949-957
-
-
Ha, E.-M.1
Lee, K.-A.2
Seo, Y.Y.3
Kim, S.-H.4
Lim, J.-H.5
Oh, B.-H.6
-
11
-
-
27644498442
-
A direct role for dual oxidase in Drosophila gut immunity
-
Ha E-M, Oh C-T, Bae YS, Lee W-J, A direct role for dual oxidase in Drosophila gut immunity. Science (80-). 2005;847: 847–50. doi: 10.1126/science.1117311
-
(2005)
Science (80-)
, vol.847
, pp. 847-850
-
-
Ha, E.-M.1
Oh, C.-T.2
Bae, Y.S.3
Lee, W.-J.4
-
12
-
-
1542406446
-
NOX enzymes and the biology of reactive oxygen
-
Lambeth JD, NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4: 181–9. doi: 10.1038/nri1312 15039755
-
(2004)
Nat Rev Immunol
, vol.4
, pp. 181-189
-
-
Lambeth, J.D.1
-
13
-
-
62549130821
-
TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells
-
Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A. 2009;106: 3408–13. doi: 10.1073/pnas.0805323106 19211797
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3408-3413
-
-
Nozawa, K.1
Kawabata-Shoda, E.2
Doihara, H.3
Kojima, R.4
Okada, H.5
Mochizuki, S.6
-
14
-
-
84927131694
-
Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis
-
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell. 2015;161: 264–276. doi: 10.1016/j.cell.2015.02.047 25860609
-
(2015)
Cell
, vol.161
, pp. 264-276
-
-
Yano, J.M.1
Yu, K.2
Donaldson, G.P.3
Shastri, G.G.4
Ann, P.5
Ma, L.6
-
15
-
-
77955287219
-
Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells
-
LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G, Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol. 2010;10: 14. doi: 10.1186/1472-6793-10-14 20698983
-
(2010)
BMC Physiol
, vol.10
, pp. 14
-
-
LaJeunesse, D.R.1
Johnson, B.2
Presnell, J.S.3
Catignas, K.K.4
Zapotoczny, G.5
-
16
-
-
83355168712
-
Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells
-
Park J- H, Kwon JY, Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells. PLoS One. 2011;6: e29022. doi: 10.1371/journal.pone.0029022 22194978
-
(2011)
PLoS One
, vol.6
, pp. e29022
-
-
Park J-, H.1
Kwon, J.Y.2
-
17
-
-
67349138657
-
Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot.—PubMed—NCBI
-
Veenstra JA, Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot.—PubMed—NCBI. Cell Tissue Res. 2009;336: 309–323. doi: 10.1007/s00441-009-0769-y 19319573
-
(2009)
Cell Tissue Res
, vol.336
, pp. 309-323
-
-
Veenstra, J.A.1
-
18
-
-
43049090817
-
TRPA1 is a major oxidant sensor in murine airway sensory neurons
-
Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE, TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008/04/10 ed. 2008;118: 1899–1910. doi: 10.1172/JCI34192 18398506
-
(2008)
J Clin Invest
, vol.118
, pp. 1899-1910
-
-
Bessac, B.F.1
Sivula, M.2
von Hehn, C.A.3
Escalera, J.4
Cohn, L.5
Jordt, S.E.6
-
19
-
-
77950232179
-
Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception
-
Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. Nature Publishing Group; 2010;464: 597–600. doi: 10.1038/nature08848 20237474
-
(2010)
Nature
, vol.464
, pp. 597-600
-
-
Kang, K.1
Pulver, S.R.2
Panzano, V.C.3
Chang, E.C.4
Griffith, L.C.5
Theobald, D.L.6
-
20
-
-
47049101429
-
An internal thermal sensor controlling temperature preference in Drosophila
-
Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature. Macmillan Publishers Limited. All rights reserved; 2008;454: 217–220. doi: 10.1038/nature07001 18548007
-
(2008)
Nature
, vol.454
, pp. 217-220
-
-
Hamada, F.N.1
Rosenzweig, M.2
Kang, K.3
Pulver, S.R.4
Ghezzi, A.5
Jegla, T.J.6
-
21
-
-
0037804066
-
Opposite thermosensor in fruitfly and mouse
-
Viswanath V, Story GM, Peier AM, Petrus MJ, Hwang SW, Patapoutian A, et al. Opposite thermosensor in fruitfly and mouse. Nature. 2003;423: 822–823. doi: 10.1038/423822a 12815418
-
(2003)
Nature
, vol.423
, pp. 822-823
-
-
Viswanath, V.1
Story, G.M.2
Peier, A.M.3
Petrus, M.J.4
Hwang, S.W.5
Patapoutian, A.6
-
22
-
-
84855443895
-
Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila
-
Kang K, Panzano VC, Chang EC, Ni L, Dainis AM, Jenkins AM, et al. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature. Nature Publishing Group; 2012;481: 76–80. doi: 10.1038/nature10715
-
(2012)
Nature
, vol.481
, pp. 76-80
-
-
Kang, K.1
Panzano, V.C.2
Chang, E.C.3
Ni, L.4
Dainis, A.M.5
Jenkins, A.M.6
-
23
-
-
85015565250
-
The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression
-
Du EJ, Ahn TJ, Choi MS, Kwon I, Kim H- W, Kwon JY, et al. The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression. Mol Cells. 2015;38: 911–7. doi: 10.14348/molcells.2015.0215 26447139
-
(2015)
Mol Cells
, vol.38
, pp. 911-917
-
-
Du, E.J.1
Ahn, T.J.2
Choi, M.S.3
Kwon, I.4
Kim H-, W.5
Kwon, J.Y.6
-
24
-
-
77957225873
-
Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal
-
Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, et al. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol. 2010;20: 1672–8. doi: 10.1016/j.cub.2010.08.016 20797863
-
(2010)
Curr Biol
, vol.20
, pp. 1672-1678
-
-
Kwon, Y.1
Kim, S.H.2
Ronderos, D.S.3
Lee, Y.4
Akitake, B.5
Woodward, O.M.6
-
25
-
-
84856242768
-
Thermosensory and non-thermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat sensor domains of a thermoTRP channel
-
Zhong L, Bellemer A, Yan H, Ken H, Jessica R, Hwang RY, et al. Thermosensory and non-thermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat sensor domains of a thermoTRP channel. Cell Rep. Tracey et al.; 2012;1: 43–55. doi: 10.1016/j.celrep.2011.11.002
-
(2012)
Cell Rep. Tracey et al.
, vol.1
, pp. 43-55
-
-
Zhong, L.1
Bellemer, A.2
Yan, H.3
Ken, H.4
Jessica, R.5
Hwang, R.Y.6
-
26
-
-
67649292737
-
Unlocking the secrets of the genome
-
Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, et al. Unlocking the secrets of the genome. Nature. 2009;459: 927–30. doi: 10.1038/459927a 19536255
-
(2009)
Nature
, vol.459
, pp. 927-930
-
-
Celniker, S.E.1
Dillon, L.A.L.2
Gerstein, M.B.3
Gunsalus, K.C.4
Henikoff, S.5
Karpen, G.H.6
-
27
-
-
84878614163
-
Morphological and molecular characterization of adult midgut compartmentalization in Drosophila
-
Buchon N, Osman D, David FP a, Fang HY, Boquete J-P, Deplancke B, et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. The Authors; 2013;3: 1725–38. doi: 10.1016/j.celrep.2013.04.001
-
(2013)
Cell Rep. The Authors
, vol.3
, pp. 1725-1738
-
-
Buchon, N.1
Osman, D.2
David, F.P.3
Fang, H.Y.4
Boquete, J.-P.5
Deplancke, B.6
-
28
-
-
55749102550
-
Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster
-
Rosenzweig M, Kang K, Garrity PA, Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2008;105: 14668–73. doi: 10.1073/pnas.0805041105 18787131
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 14668-14673
-
-
Rosenzweig, M.1
Kang, K.2
Garrity, P.A.3
-
29
-
-
77952326011
-
Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons
-
Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C, Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci U S A. 2010;107: 8440–5. doi: 10.1073/pnas.1001425107 20404155
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 8440-8445
-
-
Kim, S.H.1
Lee, Y.2
Akitake, B.3
Woodward, O.M.4
Guggino, W.B.5
Montell, C.6
-
30
-
-
84939897929
-
Spotting the differences: Probing host/microbiota interactions with a dedicated software tool for the analysis of faecal outputs in Drosophila
-
Wayland MT, Defaye A, Rocha J, Jayaram SA, Royet J, Miguel-Aliaga I, et al. Spotting the differences: Probing host/microbiota interactions with a dedicated software tool for the analysis of faecal outputs in Drosophila. J Insect Physiol. Elsevier Ltd; 2014;69: 126–135. doi: 10.1016/j.jinsphys.2014.05.023 24907675
-
(2014)
J Insect Physiol
, vol.69
, pp. 126-135
-
-
Wayland, M.T.1
Defaye, A.2
Rocha, J.3
Jayaram, S.A.4
Royet, J.5
Miguel-Aliaga, I.6
-
31
-
-
78650866455
-
Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis
-
Cognigni P, Bailey AP, Miguel-aliaga I, Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab. Elsevier Inc.; 2011;13: 92–104. doi: 10.1016/j.cmet.2010.12.010 21195352
-
(2011)
Cell Metab
, vol.13
, pp. 92-104
-
-
Cognigni, P.1
Bailey, A.P.2
Miguel-aliaga, I.3
-
32
-
-
33845900989
-
TRP channel activation by reversible covalent modification
-
Hinman A, Chuang H-HH, Bautista DM, Julius D, TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A. 2006/12/14 ed. 2006;103: 19564–19568. [pii] doi: 10.1073/pnas.0609598103 17164327
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 19564-19568
-
-
Hinman, A.1
Chuang, H.-H.H.2
Bautista, D.M.3
Julius, D.4
-
33
-
-
79954997251
-
A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production
-
Chen X, Lee K-A, Ha E-M, Lee KM, Seo YY, Choi HK, et al. A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem Commun (Camb). 2011;47: 4373–5. doi: 10.1039/c1cc10589b
-
(2011)
Chem Commun (Camb)
, vol.47
, pp. 4373-4375
-
-
Chen, X.1
Lee, K.-A.2
Ha, E.-M.3
Lee, K.M.4
Seo, Y.Y.5
Choi, H.K.6
-
34
-
-
70350398226
-
JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span
-
Lee K-S, Iijima-Ando K, Iijima K, Lee W-J, Lee JH, Yu K, et al. JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J Biol Chem. 2009;284: 29454–61. doi: 10.1074/jbc.M109.028027 19720829
-
(2009)
J Biol Chem
, vol.284
, pp. 29454-29461
-
-
Lee, K.-S.1
Iijima-Ando, K.2
Iijima, K.3
Lee, W.-J.4
Lee, J.H.5
Yu, K.6
-
35
-
-
0033231556
-
Relish, a Central Factor in the Control of Humoral but Not Cellular Immunity in Drosophila
-
Hedengren M, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D, Relish, a Central Factor in the Control of Humoral but Not Cellular Immunity in Drosophila. Mol Cell. 1999;4: 827–837. doi: 10.1016/S1097-2765(00)80392-5 10619029
-
(1999)
Mol Cell
, vol.4
, pp. 827-837
-
-
Hedengren, M.1
Dushay, M.S.2
Ando, I.3
Ekengren, S.4
Wihlborg, M.5
Hultmark, D.6
-
36
-
-
33847168133
-
Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling
-
Ohlstein B, Spradling A, Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science. 2007;315: 988–92. doi: 10.1126/science.1136606 17303754
-
(2007)
Science
, vol.315
, pp. 988-992
-
-
Ohlstein, B.1
Spradling, A.2
-
37
-
-
13844250536
-
The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis
-
Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA, The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 2005;19: 419–424. 15681611
-
(2005)
Genes Dev
, vol.19
, pp. 419-424
-
-
Rosenzweig, M.1
Brennan, K.M.2
Tayler, T.D.3
Phelps, P.O.4
Patapoutian, A.5
Garrity, P.A.6
-
38
-
-
33846692923
-
Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines
-
Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445: 541–5. doi: 10.1038/nature05544 17237762
-
(2007)
Nature
, vol.445
, pp. 541-545
-
-
Macpherson, L.J.1
Dubin, A.E.2
Evans, M.J.3
Marr, F.4
Schultz, P.G.5
Cravatt, B.F.6
-
39
-
-
84969429235
-
-
Brown EG, Ring Nitrogen and Key Biomolecules: The Biochemistry of N-Heterocycles. Springer Science & Business Media; 2012.
-
(2012)
-
-
Brown, E.G.1
-
40
-
-
0033514353
-
Allosteric dominance in carbamoyl phosphate synthetase
-
Braxton BL, Mullins LS, Raushel FM, Reinhart GD, Allosteric dominance in carbamoyl phosphate synthetase. Biochemistry. 1999;38: 1394–401. doi: 10.1021/bi982097w 9931004
-
(1999)
Biochemistry
, vol.38
, pp. 1394-1401
-
-
Braxton, B.L.1
Mullins, L.S.2
Raushel, F.M.3
Reinhart, G.D.4
-
42
-
-
84887458268
-
The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli
-
Parker BW, Schwessinger EA, Jakob U, Gray MJ, The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J Biol Chem. 2013;288: 32574–84. doi: 10.1074/jbc.M113.503516 24078635
-
(2013)
J Biol Chem
, vol.288
, pp. 32574-32584
-
-
Parker, B.W.1
Schwessinger, E.A.2
Jakob, U.3
Gray, M.J.4
-
43
-
-
84878675814
-
Methionine oxidation activates a transcription factor in response to oxidative stress
-
Drazic A, Miura H, Peschek J, Le Y, Bach NC, Kriehuber T, et al. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc Natl Acad Sci U S A. 2013;110: 9493–8. doi: 10.1073/pnas.1300578110 23690622
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 9493-9498
-
-
Drazic, A.1
Miura, H.2
Peschek, J.3
Le, Y.4
Bach, N.C.5
Kriehuber, T.6
-
44
-
-
84884528066
-
Bacterial responses to reactive chlorine species
-
Gray MJ, Wholey W-Y, Jakob U, Bacterial responses to reactive chlorine species. Annu Rev Microbiol. 2013;67: 141–60. doi: 10.1146/annurev-micro-102912-142520 23768204
-
(2013)
Annu Rev Microbiol
, vol.67
, pp. 141-160
-
-
Gray, M.J.1
Wholey, W.-Y.2
Jakob, U.3
-
45
-
-
11244343895
-
An antioxidant system required for host protection against gut infection in Drosophila
-
Ha E-M, Oh C-T, Ryu J-H, Bae Y-S, Kang S-W, Jang I-H, et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell. 2005;8: 125–32. doi: 10.1016/j.devcel.2004.11.007 15621536
-
(2005)
Dev Cell
, vol.8
, pp. 125-132
-
-
Ha, E.-M.1
Oh, C.-T.2
Ryu, J.-H.3
Bae, Y.-S.4
Kang, S.-W.5
Jang, I.-H.6
-
46
-
-
84884135043
-
Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity
-
Zhou Y, Suzuki Y, Uchida K, Tominaga M, Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nat Commun. Nature Publishing Group; 2013;4: 2399. doi: 10.1038/ncomms3399
-
(2013)
Nat Commun. Nature Publishing Group
, vol.4
, pp. 2399
-
-
Zhou, Y.1
Suzuki, Y.2
Uchida, K.3
Tominaga, M.4
-
47
-
-
84944711213
-
2
-
Guntur AR, Gu P, Takle K, Chen J, Xiang Y, Yang C-H, Drosophila TRPA1 isoforms detect UV light via photochemical production of H 2 O 2. Proc Natl Acad Sci. 2015; 201514862. doi: 10.1073/pnas.1514862112
-
(2015)
Proc Natl Acad Sci
-
-
Guntur, A.R.1
Gu, P.2
Takle, K.3
Chen, J.4
Xiang, Y.5
Yang, C.-H.6
-
48
-
-
84885605276
-
Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome
-
Ringel Y, Maharshak N, Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2013;305: G529–41. doi: 10.1152/ajpgi.00207.2012 23886861
-
(2013)
Am J Physiol Gastrointest Liver Physiol
, vol.305
, pp. 29-41
-
-
Ringel, Y.1
Maharshak, N.2
-
49
-
-
2442458847
-
Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31
-
Groth AC, Fish M, Nusse R, Calos MP, Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 2004;166: 1775–82. 15126397
-
(2004)
Genetics
, vol.166
, pp. 1775-1782
-
-
Groth, A.C.1
Fish, M.2
Nusse, R.3
Calos, M.P.4
-
50
-
-
41349092785
-
Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes
-
Markstein M, Pitsouli C, Villalta C, Celniker SE, Perrimon N, Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet. 2008;40: 476–83. doi: 10.1038/ng.101 18311141
-
(2008)
Nat Genet
, vol.40
, pp. 476-483
-
-
Markstein, M.1
Pitsouli, C.2
Villalta, C.3
Celniker, S.E.4
Perrimon, N.5
-
51
-
-
37749006118
-
Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster
-
Ni J-Q, Markstein M, Binari R, Pfeiffer B, Liu L-P, Villalta C, et al. Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods. Nature Publishing Group; 2008;5: 49–51. doi: 10.1038/nmeth1146 18084299
-
(2008)
Nat Methods
, vol.5
, pp. 49-51
-
-
Ni, J.-Q.1
Markstein, M.2
Binari, R.3
Pfeiffer, B.4
Liu, L.-P.5
Villalta, C.6
-
52
-
-
34347207237
-
Prandiology of Drosophila and the CAFE assay
-
Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, et al. Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A. 2007;104: 8253–6. doi: 10.1073/pnas.0702726104 17494737
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 8253-8256
-
-
Ja, W.W.1
Carvalho, G.B.2
Mak, E.M.3
de la Rosa, N.N.4
Fang, A.Y.5
Liong, J.C.6
|