-
3
-
-
79959804516
-
Histone deacetylases as regulators of inflammation and immunity
-
Shakespear MR, Halili MA, Irvine KM, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011; 32: 335-43.
-
(2011)
Trends Immunol
, vol.32
, pp. 335-343
-
-
Shakespear, M.R.1
Halili, M.A.2
Irvine, K.M.3
-
4
-
-
79957939679
-
Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries
-
Shein NA, Shohami E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med. 2011; 17: 448-56.
-
(2011)
Mol Med
, vol.17
, pp. 448-456
-
-
Shein, N.A.1
Shohami, E.2
-
5
-
-
77951247066
-
Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein
-
Venkataramani V, Rossner C, Iffland L, et al. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein. J Biol Chem. 2010; 285: 10678-89.
-
(2010)
J Biol Chem
, vol.285
, pp. 10678-10689
-
-
Venkataramani, V.1
Rossner, C.2
Iffland, L.3
-
6
-
-
57049177826
-
Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity
-
Kim D, Frank CL, Dobbin MM, et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron. 2008; 60: 803-17.
-
(2008)
Neuron
, vol.60
, pp. 803-817
-
-
Kim, D.1
Frank, C.L.2
Dobbin, M.M.3
-
7
-
-
73349143672
-
HDAC6 is a target for protection and regeneration following injury in the nervous system
-
Rivieccio MA, Brochier C, Willis DE, et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA. 2009; 106: 19599-604.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 19599-19604
-
-
Rivieccio, M.A.1
Brochier, C.2
Willis, D.E.3
-
8
-
-
68749117698
-
Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke
-
Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke. 2009; 40: 2899-905.
-
(2009)
Stroke
, vol.40
, pp. 2899-2905
-
-
Langley, B.1
Brochier, C.2
Rivieccio, M.A.3
-
9
-
-
84877015491
-
HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury
-
He M, Zhang B, Wei X, et al. HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2013; 17: 531-42.
-
(2013)
J Cell Mol Med
, vol.17
, pp. 531-542
-
-
He, M.1
Zhang, B.2
Wei, X.3
-
10
-
-
84863393715
-
Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
-
International Stroke Genetics Consortium, Wellcome Trust Case Control Consortium
-
International Stroke Genetics Consortium, Wellcome Trust Case Control Consortium, Bellenguez C, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012; 44: 328-33.
-
(2012)
Nat Genet
, vol.44
, pp. 328-333
-
-
Bellenguez, C.1
-
11
-
-
84876830806
-
Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis
-
Markus HS, Makela KM, Bevan S, et al. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke. 2013; 44: 1220-5.
-
(2013)
Stroke
, vol.44
, pp. 1220-1225
-
-
Markus, H.S.1
Makela, K.M.2
Bevan, S.3
-
12
-
-
70450230598
-
NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury
-
Wang Z, Wei X, Zhang Y, et al. NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem. 2009; 24: 619-26.
-
(2009)
Cell Physiol Biochem
, vol.24
, pp. 619-626
-
-
Wang, Z.1
Wei, X.2
Zhang, Y.3
-
13
-
-
84988042486
-
Stereotaxic gene delivery in the rodent brain
-
Cetin A, Komai S, Eliava M, et al. Stereotaxic gene delivery in the rodent brain. Nat Protoc. 2006; 1: 3166-73.
-
(2006)
Nat Protoc
, vol.1
, pp. 3166-3173
-
-
Cetin, A.1
Komai, S.2
Eliava, M.3
-
14
-
-
78649983743
-
Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95
-
Zhou L, Li F, Xu HB, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010; 16: 1439-43.
-
(2010)
Nat Med
, vol.16
, pp. 1439-1443
-
-
Zhou, L.1
Li, F.2
Xu, H.B.3
-
15
-
-
84884393430
-
NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke
-
Wang Z, Wei X, Liu K, et al. NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke. Free Radic Biol Med. 2013; 65C: 942-51.
-
(2013)
Free Radic Biol Med
, vol.65
, pp. 942-951
-
-
Wang, Z.1
Wei, X.2
Liu, K.3
-
16
-
-
33747598070
-
Complement component C3 mediates inflammatory injury following focal cerebral ischemia
-
Mocco J, Mack WJ, Ducruet AF, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006; 99: 209-17.
-
(2006)
Circ Res
, vol.99
, pp. 209-217
-
-
Mocco, J.1
Mack, W.J.2
Ducruet, A.F.3
-
17
-
-
78650919356
-
Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition
-
Wang Z, Leng Y, Tsai LK, et al. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab. 2011; 31: 52-7.
-
(2011)
J Cereb Blood Flow Metab
, vol.31
, pp. 52-57
-
-
Wang, Z.1
Leng, Y.2
Tsai, L.K.3
-
18
-
-
84929131583
-
Progranulin protects against renal ischemia/reperfusion injury in mice
-
Zhou M, Tang W, Fu Y, et al. Progranulin protects against renal ischemia/reperfusion injury in mice. Kidney Int. 2015; 87: 918-29.
-
(2015)
Kidney Int
, vol.87
, pp. 918-929
-
-
Zhou, M.1
Tang, W.2
Fu, Y.3
-
19
-
-
84866554019
-
TIPE2, a novel regulator of immunity, protects against experimental stroke
-
Zhang Y, Wei X, Liu L, et al. TIPE2, a novel regulator of immunity, protects against experimental stroke. J Biol Chem. 2012; 287: 32546-55.
-
(2012)
J Biol Chem
, vol.287
, pp. 32546-32555
-
-
Zhang, Y.1
Wei, X.2
Liu, L.3
-
20
-
-
80053560038
-
Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by beta(1)-integrins
-
Osada T, Gu YH, Kanazawa M, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by beta(1)-integrins. J Cereb Blood Flow Metab. 2011; 31: 1972-85.
-
(2011)
J Cereb Blood Flow Metab
, vol.31
, pp. 1972-1985
-
-
Osada, T.1
Gu, Y.H.2
Kanazawa, M.3
-
21
-
-
21644461236
-
Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells
-
Yi F, Zhang AY, Janscha JL, et al. Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int. 2004; 66: 1977-87.
-
(2004)
Kidney Int
, vol.66
, pp. 1977-1987
-
-
Yi, F.1
Zhang, A.Y.2
Janscha, J.L.3
-
23
-
-
84923370285
-
Endothelial cells and human cerebral small vessel disease
-
Hainsworth AH, Oommen AT, Bridges LR. Endothelial cells and human cerebral small vessel disease. Brain Pathol. 2015; 25: 44-50.
-
(2015)
Brain Pathol
, vol.25
, pp. 44-50
-
-
Hainsworth, A.H.1
Oommen, A.T.2
Bridges, L.R.3
-
24
-
-
61649124034
-
Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations
-
Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations. Autophagy. 2009; 5: 221-3.
-
(2009)
Autophagy
, vol.5
, pp. 221-223
-
-
Balduini, W.1
Carloni, S.2
Buonocore, G.3
-
25
-
-
84907163183
-
ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia
-
Wang P, Xu TY, Wei K, et al. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy. 2014; 10: 1535-48.
-
(2014)
Autophagy
, vol.10
, pp. 1535-1548
-
-
Wang, P.1
Xu, T.Y.2
Wei, K.3
-
26
-
-
84884306536
-
Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance
-
Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013; 9: 1321-33.
-
(2013)
Autophagy
, vol.9
, pp. 1321-1333
-
-
Zhang, X.1
Yan, H.2
Yuan, Y.3
-
27
-
-
41049092706
-
Autophagic neuron death in neonatal brain ischemia/hypoxia
-
Uchiyama Y, Koike M, Shibata M. Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy. 2008; 4: 404-8.
-
(2008)
Autophagy
, vol.4
, pp. 404-408
-
-
Uchiyama, Y.1
Koike, M.2
Shibata, M.3
-
28
-
-
77955887349
-
Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia
-
Qin AP, Liu CF, Qin YY, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy. 2010; 6: 738-53.
-
(2010)
Autophagy
, vol.6
, pp. 738-753
-
-
Qin, A.P.1
Liu, C.F.2
Qin, Y.Y.3
-
29
-
-
80053419807
-
Beclin 1-independent autophagy contributes to apoptosis in cortical neurons
-
Grishchuk Y, Ginet V, Truttmann AC, et al. Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy. 2011; 7: 1115-31.
-
(2011)
Autophagy
, vol.7
, pp. 1115-1131
-
-
Grishchuk, Y.1
Ginet, V.2
Truttmann, A.C.3
-
30
-
-
84927656013
-
The role of autophagy in vascular biology
-
Nussenzweig SC, Verma S, Finkel T. The role of autophagy in vascular biology. Circ Res. 2015; 116: 480-8.
-
(2015)
Circ Res
, vol.116
, pp. 480-488
-
-
Nussenzweig, S.C.1
Verma, S.2
Finkel, T.3
-
31
-
-
84896711680
-
Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation
-
Urbanek T, Kuczmik W, Basta-Kaim A, et al. Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation. Brain Res. 2014; 1553: 1-11.
-
(2014)
Brain Res
, vol.1553
, pp. 1-11
-
-
Urbanek, T.1
Kuczmik, W.2
Basta-Kaim, A.3
-
32
-
-
84901592919
-
Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases
-
Bachetti T, Ceccherini I. Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases. J Mol Med (Berl). 2014; 92: 583-94.
-
(2014)
J Mol Med (Berl)
, vol.92
, pp. 583-594
-
-
Bachetti, T.1
Ceccherini, I.2
-
33
-
-
84924873141
-
Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation
-
Nighot PK, Hu CA, Ma TY. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. J Biol Chem. 2015; 290: 7234-46.
-
(2015)
J Biol Chem
, vol.290
, pp. 7234-7246
-
-
Nighot, P.K.1
Hu, C.A.2
Ma, T.Y.3
-
34
-
-
84860203624
-
Function and molecular mechanism of acetylation in autophagy regulation
-
Yi C, Ma M, Ran L, et al. Function and molecular mechanism of acetylation in autophagy regulation. Science. 2012; 336: 474-7.
-
(2012)
Science
, vol.336
, pp. 474-477
-
-
Yi, C.1
Ma, M.2
Ran, L.3
-
35
-
-
79955579989
-
The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
-
Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011; 13: 517-26.
-
(2011)
Cell Metab
, vol.13
, pp. 517-526
-
-
Donohoe, D.R.1
Garge, N.2
Zhang, X.3
-
36
-
-
84926183748
-
Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy
-
Wang X, Liu J, Zhen J, et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int. 2014; 86: 712-25.
-
(2014)
Kidney Int
, vol.86
, pp. 712-725
-
-
Wang, X.1
Liu, J.2
Zhen, J.3
-
37
-
-
84880955235
-
Regeneration of neuronal cells following cerebral injury
-
Dailey T, Tajiri N, Kaneko Y, et al. Regeneration of neuronal cells following cerebral injury. Front Neurol Neurosci. 2013; 32: 54-61.
-
(2013)
Front Neurol Neurosci
, vol.32
, pp. 54-61
-
-
Dailey, T.1
Tajiri, N.2
Kaneko, Y.3
-
39
-
-
84928471452
-
Class IIa HDACs - new insights into their functions in physiology and pathology
-
Parra M. Class IIa HDACs - new insights into their functions in physiology and pathology. FEBS J. 2015; 282: 1736-44.
-
(2015)
FEBS J
, vol.282
, pp. 1736-1744
-
-
Parra, M.1
-
40
-
-
77951863880
-
Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons
-
Sugo N, Oshiro H, Takemura M, et al. Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci. 2010; 31: 1521-32.
-
(2010)
Eur J Neurosci
, vol.31
, pp. 1521-1532
-
-
Sugo, N.1
Oshiro, H.2
Takemura, M.3
-
41
-
-
84899842005
-
HDAC9 is implicated in schizophrenia and expressed specifically in post-mitotic neurons but not in adult neural stem cells
-
Lang B, Alrahbeni TM, Clair DS, et al. HDAC9 is implicated in schizophrenia and expressed specifically in post-mitotic neurons but not in adult neural stem cells. Am J Stem Cells. 2012; 1: 31-41.
-
(2012)
Am J Stem Cells
, vol.1
, pp. 31-41
-
-
Lang, B.1
Alrahbeni, T.M.2
Clair, D.S.3
|