-
3
-
-
84869847817
-
-
In, Proc. AISec.,, Raleigh, North Carolina, USA, Oct. 1
-
Schwenk G, Bikadorov A, Krueger T, Rieck K. Autonomous learning for detection of JavaScript attacks: vision or reality?. In Proc. AISec., Raleigh, North Carolina, USA, Oct. 19, 2012; pp. 93–104.
-
(2012)
Autonomous learning for detection of JavaScript attacks: vision or reality?
, pp. 93-104
-
-
Schwenk, G.1
Bikadorov, A.2
Krueger, T.3
Rieck, K.4
-
4
-
-
85047013509
-
-
Hulk eliciting malicious behavior in browser extensions., San Diego, CA, Aug
-
rd USENIX Security Symposium, San Diego, CA, Aug. 2014; pp. 641–654.
-
(2014)
rd USENIX Security Symposium
, pp. 641-654
-
-
Kapravelos, A.1
Grier, C.2
Chachra, N.3
Kruegel, C.4
Vigna, G.5
Paxson, V.6
-
5
-
-
84898048159
-
Information security governance: the art of detecting hidden malware
-
In, Mellado D, Sánchez L, FernándezMedina E, Piattini M, (eds)., IGI Global, headquartered in Hershey, Pennsylvania (USA
-
Alazab M, Venkatraman S, Watters P, Alazab M. Information security governance: the art of detecting hidden malware. In IT Security Governance Innovations: Theory and Research, Mellado D, Sánchez L, FernándezMedina E, Piattini M (eds). IGI Global: headquartered in Hershey, Pennsylvania (USA), 2012; pp. 293–315.
-
(2012)
IT Security Governance Innovations: Theory and Research
, pp. 293-315
-
-
Alazab, M.1
Venkatraman, S.2
Watters, P.3
Alazab, M.4
-
7
-
-
84858811097
-
Analysis and identification of malicious JavaScript code
-
Fraiwan M, Al-Salman R, Khasawneh N, Conrad S. Analysis and identification of malicious JavaScript code. Information Security Journal: A Global Perspective 2012; 21(1):1–11.
-
(2012)
Information Security Journal: A Global Perspective
, vol.21
, Issue.1
, pp. 1-11
-
-
Fraiwan, M.1
Al-Salman, R.2
Khasawneh, N.3
Conrad, S.4
-
9
-
-
78751553658
-
-
Cujo efficient detection and prevention of drive-by-download attacks., Austin, Texas, USA, Dec. 201
-
th Annual Computer Security Applications Conference, Austin, Texas, USA, Dec. 2010, pp. 31–39.
-
th Annual Computer Security Applications Conference
, pp. 31-39
-
-
Rieck, K.1
Krueger, T.2
Dewald, A.3
-
10
-
-
84865417198
-
Efficient detection of malicious web pages using high-interaction client honeypots
-
Kim HG, Kim DJ, Cho SJ, Park MJ, Park MY. Efficient detection of malicious web pages using high-interaction client honeypots. Journal of Information Science and Engineering 2012; 28(5):911–924.
-
(2012)
Journal of Information Science and Engineering
, vol.28
, Issue.5
, pp. 911-924
-
-
Kim, H.G.1
Kim, D.J.2
Cho, S.J.3
Park, M.J.4
Park, M.Y.5
-
11
-
-
77953805944
-
-
Honeyware a web-based low interaction client honeypot., Paris, France, Apri
-
Alosefer Y, Rana O. Honeyware: a web-based low interaction client honeypot. The Third Int. Conf. On Software Testing, Verification, and Validation, Paris, France, April 2010; pp. 410–417.
-
(2010)
The Third Int. Conf. On Software Testing, Verification, and Validation
, pp. 410-417
-
-
Alosefer, Y.1
Rana, O.2
-
12
-
-
76549111997
-
-
Mitigating drive-by-download attacks challenges and open problems., Zurich, Switzerland, Apri
-
Egele M, Kirda E, Kruegel C. Mitigating drive-by-download attacks: challenges and open problems. IFIP WG 11.4 International Workshop, Zurich, Switzerland, April 2009; pp. 52–62.
-
(2009)
IFIP WG 11.4 International Workshop
, pp. 52-62
-
-
Egele, M.1
Kirda, E.2
Kruegel, C.3
-
14
-
-
84873447654
-
-
Prophiler a fast filter for the large-scale detection of malicious web In, Hyderabad, Indi
-
Canali D, Cova M, Vigna G, Kruegel C. Prophiler: a fast filter for the large-scale detection of malicious web pages. In Proc. of the Int. World Wide Web, Hyderabad, India, 2011; pp. 197–206.
-
(2011)
Proc. of the Int. World Wide Web
, pp. 197-206
-
-
Canali, D.1
Cova, M.2
Vigna, G.3
Kruegel, C.4
-
15
-
-
84870509534
-
-
Zero-day malware detection based on supervised learning algorithms of API call signature
-
Alazab M, Venkatraman S, Watters P, Alazab M. Zero-day malware detection based on supervised learning algorithms of API call signatures. AusDM' 11 Proc. of the Ninth Australasian Data Mining Conference, vol. 121, pp. 171–182.
-
AusDM' 11 Proc. of the Ninth Australasian Data Mining Conference
, vol.121
, pp. 171-182
-
-
Alazab, M.1
Venkatraman, S.2
Watters, P.3
Alazab, M.4
-
16
-
-
84954284066
-
Hybrids of support vector machine wrapper and filter based framework for malware detection
-
Huda M, Abawajy J, Alazab M, Abdollalihian M, Islam R, Yearwood J. Hybrids of support vector machine wrapper and filter based framework for malware detection. Future Generation Computer Systems 2014. doi:10.1016/j.future.2014.06.001.
-
(2014)
Future Generation Computer Systems
-
-
Huda, M.1
Abawajy, J.2
Alazab, M.3
Abdollalihian, M.4
Islam, R.5
Yearwood, J.6
-
17
-
-
84919360062
-
Profiling and classifying the behavior of malicious codes
-
Alazab M. Profiling and classifying the behavior of malicious codes. Journal of Systems and Software 2015; 100:91–102.
-
(2015)
Journal of Systems and Software
, vol.100
, pp. 91-102
-
-
Alazab, M.1
-
18
-
-
84924666994
-
JSOD: JavaScript obfuscation detector
-
AL-Taharwa IA, Lee H, Jeng AB, Wu K, Ho C, Chen S. JSOD: JavaScript obfuscation detector. Security Comm. Networks 2015; 8:1092–1107. doi:10.1002/sec.1064.
-
(2015)
Security Comm. Networks
, vol.8
, pp. 1092-1107
-
-
AL-Taharwa, I.A.1
Lee, H.2
Jeng, A.B.3
Wu, K.4
Ho, C.5
Chen, S.6
-
20
-
-
84864073449
-
-
Greedy layer-wise training of deep networks. I
-
Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In Proc. Neural Inf. Process. Syst., Cambridge, MA, USA, 2007; pp. 153–160.
-
(2007)
Proc. Neural Inf. Process. Syst., Cambridge, MA, USA
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
21
-
-
77955997114
-
Deep belief networks are compact universal approximators
-
LeRoux N, Bengio Y. Deep belief networks are compact universal approximators. Neural Computation 2010; 22(8):2192–2207.
-
(2010)
Neural Computation
, vol.22
, Issue.8
, pp. 2192-2207
-
-
LeRoux, N.1
Bengio, Y.2
-
23
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research 2010; 11(12):3371–3408.
-
(2010)
Journal of Machine Learning Research
, vol.11
, Issue.12
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.5
-
24
-
-
84862286946
-
-
Deep Boltzmann machines. In, Clearwater Beach, FL, US
-
Salakhutdinov R, Hinton GE. Deep Boltzmann machines. In Proc. Int. Conf. Artif. Intell. Statist, Clearwater Beach, FL, USA, 2009; pp. 448–455.
-
(2009)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 448-455
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
25
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, The Y. A fast learning algorithm for deep belief nets. Neural Computation 2006; 18(7):1527–1554.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
The, Y.3
-
27
-
-
84862277874
-
-
Understanding the difficulty of training deep feedforward neural networks., Chia Laguna Resort, Sardinia, Ital
-
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proc. Int. Conf. Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 2010; pp. 249–256.
-
(2010)
Proc. Int. Conf. Artificial Intelligence and Statistics
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
28
-
-
84991925975
-
-
accessed 7 April 201
-
Softmax regression. http://deeplearning.stanford.edu/wiki/index.php/Softmax_Regression, accessed 7 April 2014.
-
Softmax regression
-
-
-
29
-
-
84992005818
-
-
Heritrix. http://crawler.archive.org/index.html.
-
Heritrix
-
-
-
31
-
-
84908032975
-
Comparisons of machine learning techniques for detecting malicious webpages
-
Kazemian HB, Ahmed S. Comparisons of machine learning techniques for detecting malicious webpages. Expert Systems with Applications 2015; 42(3):1166–1177.
-
(2015)
Expert Systems with Applications
, vol.42
, Issue.3
, pp. 1166-1177
-
-
Kazemian, H.B.1
Ahmed, S.2
-
32
-
-
27144518261
-
-
A novel anomaly detection scheme based on principal component classifier. In, Melbourne, Florida, USA, Nov
-
Shyu M, Chen S, Sarinnapakom K, Chang L. A novel anomaly detection scheme based on principal component classifier. In Proc. of the IEEE Foundations and New Directions of Data Mining Workshop, Melbourne, Florida, USA, Nov. 2003; pp. 172–179.
-
(2003)
Proc. of the IEEE Foundations and New Directions of Data Mining Workshop
, pp. 172-179
-
-
Shyu, M.1
Chen, S.2
Sarinnapakom, K.3
Chang, L.4
-
33
-
-
0042826822
-
Independent component analysis: algorithms and applications
-
Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000; 13(4-5):411–430.
-
(2000)
Neural Networks
, vol.13
, Issue.4-5
, pp. 411-430
-
-
Hyvarinen, A.1
Oja, E.2
-
34
-
-
84976507481
-
A beginner's guide to factor analysis: focusing on exploratory factor analysis
-
Yong AG, Pearce S. A beginner's guide to factor analysis: focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology 2013; 9(2):79–94.
-
(2013)
Tutorials in Quantitative Methods for Psychology
, vol.9
, Issue.2
, pp. 79-94
-
-
Yong, A.G.1
Pearce, S.2
|