메뉴 건너뛰기




Volumn 9, Issue 11, 2016, Pages 1520-1534

A deep learning approach for detecting malicious JavaScript code

Author keywords

deep learning; JavaScript attacks; logistic regression; random projection; SdA; static analysis

Indexed keywords

BIG DATA; CODES (SYMBOLS); COPYRIGHTS; HIGH LEVEL LANGUAGES; REGRESSION ANALYSIS; STATIC ANALYSIS;

EID: 84958231548     PISSN: 19390114     EISSN: 19390122     Source Type: Journal    
DOI: 10.1002/sec.1441     Document Type: Article
Times cited : (141)

References (34)
  • 5
    • 84898048159 scopus 로고    scopus 로고
    • Information security governance: the art of detecting hidden malware
    • In, Mellado D, Sánchez L, FernándezMedina E, Piattini M, (eds)., IGI Global, headquartered in Hershey, Pennsylvania (USA
    • Alazab M, Venkatraman S, Watters P, Alazab M. Information security governance: the art of detecting hidden malware. In IT Security Governance Innovations: Theory and Research, Mellado D, Sánchez L, FernándezMedina E, Piattini M (eds). IGI Global: headquartered in Hershey, Pennsylvania (USA), 2012; pp. 293–315.
    • (2012) IT Security Governance Innovations: Theory and Research , pp. 293-315
    • Alazab, M.1    Venkatraman, S.2    Watters, P.3    Alazab, M.4
  • 12
    • 76549111997 scopus 로고    scopus 로고
    • Mitigating drive-by-download attacks challenges and open problems., Zurich, Switzerland, Apri
    • Egele M, Kirda E, Kruegel C. Mitigating drive-by-download attacks: challenges and open problems. IFIP WG 11.4 International Workshop, Zurich, Switzerland, April 2009; pp. 52–62.
    • (2009) IFIP WG 11.4 International Workshop , pp. 52-62
    • Egele, M.1    Kirda, E.2    Kruegel, C.3
  • 14
    • 84873447654 scopus 로고    scopus 로고
    • Prophiler a fast filter for the large-scale detection of malicious web In, Hyderabad, Indi
    • Canali D, Cova M, Vigna G, Kruegel C. Prophiler: a fast filter for the large-scale detection of malicious web pages. In Proc. of the Int. World Wide Web, Hyderabad, India, 2011; pp. 197–206.
    • (2011) Proc. of the Int. World Wide Web , pp. 197-206
    • Canali, D.1    Cova, M.2    Vigna, G.3    Kruegel, C.4
  • 17
    • 84919360062 scopus 로고    scopus 로고
    • Profiling and classifying the behavior of malicious codes
    • Alazab M. Profiling and classifying the behavior of malicious codes. Journal of Systems and Software 2015; 100:91–102.
    • (2015) Journal of Systems and Software , vol.100 , pp. 91-102
    • Alazab, M.1
  • 19
  • 21
    • 77955997114 scopus 로고    scopus 로고
    • Deep belief networks are compact universal approximators
    • LeRoux N, Bengio Y. Deep belief networks are compact universal approximators. Neural Computation 2010; 22(8):2192–2207.
    • (2010) Neural Computation , vol.22 , Issue.8 , pp. 2192-2207
    • LeRoux, N.1    Bengio, Y.2
  • 23
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research 2010; 11(12):3371–3408.
    • (2010) Journal of Machine Learning Research , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 25
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, The Y. A fast learning algorithm for deep belief nets. Neural Computation 2006; 18(7):1527–1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    The, Y.3
  • 27
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks., Chia Laguna Resort, Sardinia, Ital
    • Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proc. Int. Conf. Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 2010; pp. 249–256.
    • (2010) Proc. Int. Conf. Artificial Intelligence and Statistics , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 28
    • 84991925975 scopus 로고    scopus 로고
    • accessed 7 April 201
    • Softmax regression. http://deeplearning.stanford.edu/wiki/index.php/Softmax_Regression, accessed 7 April 2014.
    • Softmax regression
  • 29
    • 84992005818 scopus 로고    scopus 로고
    • Heritrix. http://crawler.archive.org/index.html.
    • Heritrix
  • 31
    • 84908032975 scopus 로고    scopus 로고
    • Comparisons of machine learning techniques for detecting malicious webpages
    • Kazemian HB, Ahmed S. Comparisons of machine learning techniques for detecting malicious webpages. Expert Systems with Applications 2015; 42(3):1166–1177.
    • (2015) Expert Systems with Applications , vol.42 , Issue.3 , pp. 1166-1177
    • Kazemian, H.B.1    Ahmed, S.2
  • 33
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000; 13(4-5):411–430.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 34
    • 84976507481 scopus 로고    scopus 로고
    • A beginner's guide to factor analysis: focusing on exploratory factor analysis
    • Yong AG, Pearce S. A beginner's guide to factor analysis: focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology 2013; 9(2):79–94.
    • (2013) Tutorials in Quantitative Methods for Psychology , vol.9 , Issue.2 , pp. 79-94
    • Yong, A.G.1    Pearce, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.