메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages

Subgroup analyses in confirmatory clinical trials: Time to be specific about their purposes

Author keywords

Clinical trials; Subgroup analysis; Subgroups

Indexed keywords

CLINICAL TRIAL (TOPIC); EVIDENCE BASED MEDICINE; HUMAN; MEDICAL RESEARCH; METHODOLOGY; OUTCOME ASSESSMENT; PROCEDURES; REPRODUCIBILITY; STATISTICS AND NUMERICAL DATA;

EID: 84958230954     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/s12874-016-0122-6     Document Type: Article
Times cited : (68)

References (84)
  • 1
    • 0037108235 scopus 로고    scopus 로고
    • Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: Current practice and problems
    • 12325108
    • Pocock SJ, Assmann SE, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med. 2002;21:2917-30.
    • (2002) Stat. Med. , vol.21 , pp. 2917-2930
    • Pocock, S.J.1    Assmann, S.E.2    Enos, L.E.3    Kasten, L.E.4
  • 2
    • 31444441393 scopus 로고    scopus 로고
    • Subgroup analyses in therapeutic cardiovascular clinical trials: Are most of them misleading?
    • 16442886
    • Hernández AV, Boersma E, Murray GD, Habbema JD, Steyerberg EW. Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? Am Heart J. 2006;151:257-64.
    • (2006) Am. Heart J. , vol.151 , pp. 257-264
    • Hernández, A.V.1    Boersma, E.2    Murray, G.D.3    Habbema, J.D.4    Steyerberg, E.W.5
  • 3
    • 36348939350 scopus 로고    scopus 로고
    • Statistics in medicine - Reporting of subgroup analyses in clinical trials
    • 1:CAS:528:DC%2BD2sXhtlGisLnM 18032770
    • Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicine - reporting of subgroup analyses in clinical trials. NEnglJMed. 2007;357:2189-94.
    • (2007) N.Engl.J.Med , vol.357 , pp. 2189-2194
    • Wang, R.1    Lagakos, S.W.2    Ware, J.H.3    Hunter, D.J.4    Drazen, J.M.5
  • 4
    • 67650763698 scopus 로고    scopus 로고
    • Dealing with heterogeneity of treatment effects: Is the literature up to the challenge?
    • 2706823 19545379
    • Gabler NB, Duan N, Liao D, Elmore JG, Ganiats TG, Kravitz RL. Dealing with heterogeneity of treatment effects: is the literature up to the challenge? Trials. 2009;10:43.
    • (2009) Trials , vol.10 , pp. 43
    • Gabler, N.B.1    Duan, N.2    Liao, D.3    Elmore, J.G.4    Ganiats, T.G.5    Kravitz, R.L.6
  • 7
    • 0026501239 scopus 로고
    • A consumer's guide to subgroup analyses
    • 1:STN:280:DyaK38%2FnsVOitw%3D%3D 1530753
    • Oxman AD, Guyatt GH. A consumer's guide to subgroup analyses. Ann Intern Med. 1992;116:78-84.
    • (1992) Ann. Intern. Med. , vol.116 , pp. 78-84
    • Oxman, A.D.1    Guyatt, G.H.2
  • 8
    • 11844302840 scopus 로고    scopus 로고
    • Treating individuals 2. Subgroup analysis in randomised controlled trials: Importance, indications, and interpretation
    • 15639301
    • Rothwell PM. Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet. 2005;365:176-86.
    • (2005) Lancet , vol.365 , pp. 176-186
    • Rothwell, P.M.1
  • 10
    • 73449129773 scopus 로고    scopus 로고
    • How to work with a subgroup analysis
    • 2792383 20011190
    • Dijkman B, Kooistra B, Bhandari M. How to work with a subgroup analysis. CanJSurg. 2009;52:515-22.
    • (2009) Can.J.Surg , vol.52 , pp. 515-522
    • Dijkman, B.1    Kooistra, B.2    Bhandari, M.3
  • 12
    • 77951082212 scopus 로고    scopus 로고
    • Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses
    • 20354011
    • Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ. 2010;340:c117.
    • (2010) BMJ , vol.340 , pp. c117
    • Sun, X.1    Briel, M.2    Walter, S.D.3    Guyatt, G.H.4
  • 13
    • 78049249374 scopus 로고    scopus 로고
    • Inconsistent trial assessments by the National Institute for Health and Clinical Excellence and IQWiG: Standards for the performance and interpretation of subgroup analyses are needed
    • 1:STN:280:DC%2BC3cbhtlynsg%3D%3D 20172690
    • Hasford J, Bramlage P, Koch G, Lehmacher W, Einhaupl K, Rothwell PM. Inconsistent trial assessments by the National Institute for Health and Clinical Excellence and IQWiG: standards for the performance and interpretation of subgroup analyses are needed. J Clin Epidemiol. 2010;63:1298-304.
    • (2010) J. Clin. Epidemiol. , vol.63 , pp. 1298-1304
    • Hasford, J.1    Bramlage, P.2    Koch, G.3    Lehmacher, W.4    Einhaupl, K.5    Rothwell, P.M.6
  • 14
    • 78049293287 scopus 로고    scopus 로고
    • No inconsistent trial assessments by NICE and IQWiG: Different assessment goals may lead to different assessment results regarding subgroup analyses
    • 20926256
    • Bender R, Koch A, Skipka G, Kaiser T, Lange S. No inconsistent trial assessments by NICE and IQWiG: different assessment goals may lead to different assessment results regarding subgroup analyses. J Clin Epidemiol. 2010;63:1305-7.
    • (2010) J. Clin. Epidemiol. , vol.63 , pp. 1305-1307
    • Bender, R.1    Koch, A.2    Skipka, G.3    Kaiser, T.4    Lange, S.5
  • 16
    • 22544469981 scopus 로고    scopus 로고
    • Subgroup analyses in randomized clinical trials: Statistical and regulatory issues
    • 16078390
    • Grouin JM, Coste M, Lewis J. Subgroup analyses in randomized clinical trials: statistical and regulatory issues. J Biopharm Stat. 2005;15:869-82.
    • (2005) J. Biopharm. Stat. , vol.15 , pp. 869-882
    • Grouin, J.M.1    Coste, M.2    Lewis, J.3
  • 17
    • 0033549290 scopus 로고    scopus 로고
    • Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF)
    • MERIT-HF Study Group
    • MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001-7.
    • (1999) Lancet , vol.353 , pp. 2001-2007
  • 18
    • 84982208441 scopus 로고    scopus 로고
    • Letter of approval. Available at: http://www.accessdata.fda.gov/drugsatfda-docs/label/2009/019962s038lbl.pdf.
    • Letter of Approval
  • 19
    • 84891818095 scopus 로고    scopus 로고
    • An overview of statistical and regulatory issues in the planning, analysis, and interpretation of subgroup analyses in confirmatory clinical trials
    • 24392975
    • Hemmings R. An overview of statistical and regulatory issues in the planning, analysis, and interpretation of subgroup analyses in confirmatory clinical trials. J Biopharm Stat. 2014;24:4-18.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 4-18
    • Hemmings, R.1
  • 20
    • 33846447795 scopus 로고    scopus 로고
    • The probability of observing negative subgroup results when the treatment effect is positive and homogeneous across all subgroups
    • Li Z, Chuang-Stein C, Hoseyni C. The probability of observing negative subgroup results when the treatment effect is positive and homogeneous across all subgroups. Drug Inf J. 2007;41:47-56.
    • (2007) Drug Inf J. , vol.41 , pp. 47-56
    • Li, Z.1    Chuang-Stein, C.2    Hoseyni, C.3
  • 21
    • 84888130933 scopus 로고    scopus 로고
    • A regulatory perspective on essential considerations in design and analysis of subgroups when correctly classified
    • 1:CAS:528:DC%2BC2MXhsFGjt7rO 24392976
    • Wang SJ, Hung HM. A regulatory perspective on essential considerations in design and analysis of subgroups when correctly classified. J Biopharm Stat. 2014;24:19-41.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 19-41
    • Wang, S.J.1    Hung, H.M.2
  • 22
    • 84891810976 scopus 로고    scopus 로고
    • An overview of statistical planning to address subgroups in confirmatory clinical trials
    • 24392979
    • Koch GG, Schwartz TA. An overview of statistical planning to address subgroups in confirmatory clinical trials. J Biopharm Stat. 2014;24:72-93.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 72-93
    • Koch, G.G.1    Schwartz, T.A.2
  • 23
    • 84891780733 scopus 로고    scopus 로고
    • Subgroups: Time to go back to basic statistical principles?
    • 24392978
    • Keene ON, Garrett AD. Subgroups: time to go back to basic statistical principles? J Biopharm Stat. 2014;24:58-71.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 58-71
    • Keene, O.N.1    Garrett, A.D.2
  • 24
    • 1842453957 scopus 로고    scopus 로고
    • Subgroup analyses in randomized trials: Risks of subgroup-specific analyses; Power and sample size for the interaction test
    • 15066682
    • Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol. 2004;57:229-36.
    • (2004) J. Clin. Epidemiol. , vol.57 , pp. 229-236
    • Brookes, S.T.1    Whitely, E.2    Egger, M.3    Smith, G.D.4    Mulheran, P.A.5    Peters, T.J.6
  • 25
    • 84873817347 scopus 로고    scopus 로고
    • A statistical framework for decision making in confirmatory multipopulation tailoring clinical trials
    • Millen BA, Dmitrienko A, Ruberg S, Shen L. A statistical framework for decision making in confirmatory multipopulation tailoring clinical trials. Drug Inf J. 2012;46:647-56.
    • (2012) Drug Inf. J. , vol.46 , pp. 647-656
    • Millen, B.A.1    Dmitrienko, A.2    Ruberg, S.3    Shen, L.4
  • 26
    • 84884182515 scopus 로고    scopus 로고
    • Interaction of treatment with a continuous variable: Simulation study of significance level for several methods of analysis
    • 23580422
    • Royston P, Sauerbrei W. Interaction of treatment with a continuous variable: simulation study of significance level for several methods of analysis. Stat Med. 2013;32:3788-803.
    • (2013) Stat. Med. , vol.32 , pp. 3788-3803
    • Royston, P.1    Sauerbrei, W.2
  • 27
    • 84939166778 scopus 로고    scopus 로고
    • Interaction of treatment with a continuous variable: Simulation study of power for several methods of analysis
    • 25244679
    • Royston P, Sauerbrei W. Interaction of treatment with a continuous variable: simulation study of power for several methods of analysis. Stat Med. 2014;33:4695-708.
    • (2014) Stat. Med. , vol.33 , pp. 4695-4708
    • Royston, P.1    Sauerbrei, W.2
  • 28
    • 21444445554 scopus 로고    scopus 로고
    • Assessing subgroup effects with binary data: Can the use of different effect measures lead to different conclusions?
    • 1134660 15862124
    • White IR, Elbourne D. Assessing subgroup effects with binary data: can the use of different effect measures lead to different conclusions? BMCMedResMethodol. 2005;5:15.
    • (2005) BMC.Med.Res.Methodol , vol.5 , pp. 15
    • White, I.R.1    Elbourne, D.2
  • 29
    • 0002255973 scopus 로고
    • Statistical Aspects of Cancer Trials
    • K.E. Halnan (eds) Chapman and Hall London
    • Peto P. Statistical Aspects of Cancer Trials. In: Halnan KE, editor. Treatment of Cancer. London: Chapman and Hall; 1982.
    • (1982) Treatment of Cancer
    • Peto, P.1
  • 30
    • 0027198279 scopus 로고
    • A comparison of the power of two tests for qualitative interactions
    • 1:STN:280:DyaK2c%2FitlGktg%3D%3D 8210823
    • Piantadosi S, Gail MH. A comparison of the power of two tests for qualitative interactions. Stat Med. 1993;12:1239-48.
    • (1993) Stat. Med. , vol.12 , pp. 1239-1248
    • Piantadosi, S.1    Gail, M.H.2
  • 31
    • 38249019243 scopus 로고
    • On tests for qualitative interactions
    • Zelterman D. On tests for qualitative interactions. Stat Probabil Lett. 1990;10:59-63.
    • (1990) Stat Probabil Lett , vol.10 , pp. 59-63
    • Zelterman, D.1
  • 32
    • 33751072926 scopus 로고    scopus 로고
    • Detecting qualitative interactions in clinical trials: An extension of range test
    • 17146982
    • Li J, Chan IS. Detecting qualitative interactions in clinical trials: an extension of range test. J Biopharm Stat. 2006;16:831-41.
    • (2006) J. Biopharm. Stat. , vol.16 , pp. 831-841
    • Li, J.1    Chan, I.S.2
  • 33
    • 84862908630 scopus 로고    scopus 로고
    • Variable selection for qualitative interactions in personalized medicine while controlling the family-wise error rate
    • 3396291 22023676
    • Gunter L, Zhu J, Murphy S. Variable selection for qualitative interactions in personalized medicine while controlling the family-wise error rate. J Biopharm Stat. 2011;21:1063-78.
    • (2011) J. Biopharm. Stat. , vol.21 , pp. 1063-1078
    • Gunter, L.1    Zhu, J.2    Murphy, S.3
  • 34
    • 84898059248 scopus 로고    scopus 로고
    • Testing for qualitative interaction using ratios of treatment differences
    • 24302387
    • Kitsche A, Hothorn LA. Testing for qualitative interaction using ratios of treatment differences. Stat Med. 2014;33:1477-89.
    • (2014) Stat. Med. , vol.33 , pp. 1477-1489
    • Kitsche, A.1    Hothorn, L.A.2
  • 35
    • 84907711227 scopus 로고    scopus 로고
    • Detecting qualitative interactions in clinical trials with binary responses
    • 25049176
    • Kitsche A. Detecting qualitative interactions in clinical trials with binary responses. Pharm Stat. 2014;13:309-15.
    • (2014) Pharm. Stat. , vol.13 , pp. 309-315
    • Kitsche, A.1
  • 36
    • 84891765135 scopus 로고    scopus 로고
    • Standardization for subgroup analysis in randomized controlled trials
    • 4313927 24392983
    • Varadhan R, Wang SJ. Standardization for subgroup analysis in randomized controlled trials. J Biopharm Stat. 2014;24:154-67.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 154-167
    • Varadhan, R.1    Wang, S.J.2
  • 37
    • 30944435608 scopus 로고    scopus 로고
    • Eliciting and using expert opinions about influence of patient characteristics on treatment effects: A Bayesian analysis of the CHARM trials
    • 16320265
    • White IR, Pocock SJ, Wang D. Eliciting and using expert opinions about influence of patient characteristics on treatment effects: a Bayesian analysis of the CHARM trials. Stat Med. 2005;24:3805-21.
    • (2005) Stat. Med. , vol.24 , pp. 3805-3821
    • White, I.R.1    Pocock, S.J.2    Wang, D.3
  • 38
    • 76549086181 scopus 로고    scopus 로고
    • Detecting qualitative interaction: A Bayesian approach
    • 19950107
    • Bayman EO, Chaloner K, Cowles MK. Detecting qualitative interaction: a Bayesian approach. Stat Med. 2010;29:455-63.
    • (2010) Stat. Med. , vol.29 , pp. 455-463
    • Bayman, E.O.1    Chaloner, K.2    Cowles, M.K.3
  • 42
    • 33746523438 scopus 로고    scopus 로고
    • Multivariable risk prediction can greatly enhance the statistical power of clinical trial subgroup analysis
    • 1523355 16613605
    • Hayward RA, Kent DM, Vijan S, Hofer TP. Multivariable risk prediction can greatly enhance the statistical power of clinical trial subgroup analysis. BMCMedResMethodol. 2006;6:18.
    • (2006) BMC.Med.Res.Methodol. , vol.6 , pp. 18
    • Hayward, R.A.1    Kent, D.M.2    Vijan, S.3    Hofer, T.P.4
  • 43
    • 34548575455 scopus 로고    scopus 로고
    • Limitations of applying summary results of clinical trials to individual patients: The need for risk stratification
    • 1:CAS:528:DC%2BD2sXhtVGmtL3F 17848656
    • Kent DM, Hayward RA. Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA. 2007;298:1209-12.
    • (2007) JAMA , vol.298 , pp. 1209-1212
    • Kent, D.M.1    Hayward, R.A.2
  • 44
    • 77955382172 scopus 로고    scopus 로고
    • Assessing and reporting heterogeneity in treatment effects in clinical trials: A proposal
    • 2928211 20704705
    • Kent DM, Rothwell PM, Ioannidis JP, Altman DG, Hayward RA. Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal. Trials. 2010;11:85.
    • (2010) Trials , vol.11 , pp. 85
    • Kent, D.M.1    Rothwell, P.M.2    Ioannidis, J.P.3    Altman, D.G.4    Hayward, R.A.5
  • 45
    • 84887172238 scopus 로고    scopus 로고
    • Assessing heterogeneity of treatment effect in a clinical trial with the proportional interactions model
    • 23788362
    • Kovalchik SA, Varadhan R, Weiss CO. Assessing heterogeneity of treatment effect in a clinical trial with the proportional interactions model. Stat Med. 2013;32:4906-23.
    • (2013) Stat. Med. , vol.32 , pp. 4906-4923
    • Kovalchik, S.A.1    Varadhan, R.2    Weiss, C.O.3
  • 46
    • 84876969027 scopus 로고    scopus 로고
    • Multiplicity considerations for subgroup analysis subject to consistency constraint
    • 23585158
    • Alosh M, Huque MF. Multiplicity considerations for subgroup analysis subject to consistency constraint. Biom J. 2013;55:444-62.
    • (2013) Biom. J. , vol.55 , pp. 444-462
    • Alosh, M.1    Huque, M.F.2
  • 47
    • 84944151465 scopus 로고    scopus 로고
    • Statistical perspectives on subgroup analysis: Testing for heterogeneity and evaluating error rate for the complementary subgroup
    • 25331097
    • Alosh M, Huque MF, Koch GG. Statistical perspectives on subgroup analysis: testing for heterogeneity and evaluating error rate for the complementary subgroup. J Biopharm Stat. 2014;25:1161-78.
    • (2014) J. Biopharm. Stat. , vol.25 , pp. 1161-1178
    • Alosh, M.1    Huque, M.F.2    Koch, G.G.3
  • 48
    • 84962766777 scopus 로고    scopus 로고
    • Level of evidence for promising subgroup findings in an overall non-significant trial
    • (accepted)
    • Tanniou J, Tweel IV, Teerenstra S, Roes KC,.,Level of evidence for promising subgroup findings in an overall non-significant trial," Stat Methods Med Res, 2014 (accepted), available on line at: http://smm.sagepub.com/content/early/2014/01/19/0962280213519705.full.pdf+html.
    • (2014) Stat Methods Med Res
    • Tanniou, J.1    Tweel, I.V.2    Teerenstra, S.3    Roes, K.C.4
  • 49
    • 84891752239 scopus 로고    scopus 로고
    • Reliably basing conclusions on subgroups of randomized clinical trials
    • 24392977
    • Koch A, Framke T. Reliably basing conclusions on subgroups of randomized clinical trials. J Biopharm Stat. 2014;24:42-57.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 42-57
    • Koch, A.1    Framke, T.2
  • 50
    • 0032953495 scopus 로고    scopus 로고
    • Clomethiazole acute stroke study (CLASS): Results of a randomized, controlled trial of clomethiazole versus placebo in 1360 acute stroke patients
    • Wahlgren NG, Ranasinha KW, Rosolacci T, Franke CL, van Erven PM, Ashwood T, Claesson L. Clomethiazole acute stroke study (CLASS): results of a randomized, controlled trial of clomethiazole versus placebo in 1360 acute stroke patients. Stroke. 1999;30:21-8.
    • (1999) Stroke. , vol.30 , pp. 21-28
    • Wahlgren, N.G.1    Ranasinha, K.W.2    Rosolacci, T.3    Franke, C.L.4    Van Erven, P.M.5    Ashwood, T.6    Claesson, L.7
  • 51
    • 79952923297 scopus 로고    scopus 로고
    • Multiple testing of treatment-effect-modifying biomarkers in a randomized clinical trial with a survival endpoint
    • 3098305 21344471
    • Michiels S, Potthoff RF, George SL. Multiple testing of treatment-effect-modifying biomarkers in a randomized clinical trial with a survival endpoint. Stat Med. 2011;30:1502-18.
    • (2011) Stat. Med. , vol.30 , pp. 1502-1518
    • Michiels, S.1    Potthoff, R.F.2    George, S.L.3
  • 53
    • 13644270099 scopus 로고    scopus 로고
    • On the efficiency of targeted clinical trials
    • 1:STN:280:DC%2BD2M%2FlsVahug%3D%3D 15551403
    • Maitournam A, Simon R. On the efficiency of targeted clinical trials. Stat Med. 2005;24:329-39.
    • (2005) Stat. Med. , vol.24 , pp. 329-339
    • Maitournam, A.1    Simon, R.2
  • 54
    • 78649965504 scopus 로고    scopus 로고
    • Clinical trials for predictive medicine: New challenges and paradigms
    • 4041069 20338899
    • Simon R. Clinical trials for predictive medicine: new challenges and paradigms. Clin Trials. 2010;7:516-24.
    • (2010) Clin. Trials , vol.7 , pp. 516-524
    • Simon, R.1
  • 55
    • 84891809326 scopus 로고    scopus 로고
    • Decision rules for subgroup selection based on a predictive biomarker
    • 24392985
    • Krisam J, Kieser M. Decision rules for subgroup selection based on a predictive biomarker. J Biopharm Stat. 2014;24:188-202.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 188-202
    • Krisam, J.1    Kieser, M.2
  • 56
    • 84867439073 scopus 로고    scopus 로고
    • Clinical trials for predictive medicine
    • 22714719
    • Simon R. Clinical trials for predictive medicine. Stat Med. 2012;31:3031-40.
    • (2012) Stat. Med. , vol.31 , pp. 3031-3040
    • Simon, R.1
  • 57
    • 84895905845 scopus 로고    scopus 로고
    • Biomarker enrichment strategies: Matching trial design to biomarker credentials
    • 24281059
    • Freidlin B, Korn EL. Biomarker enrichment strategies: matching trial design to biomarker credentials. Nat Rev Clin Oncol. 2014;11:81-90.
    • (2014) Nat. Rev. Clin. Oncol. , vol.11 , pp. 81-90
    • Freidlin, B.1    Korn, E.L.2
  • 58
    • 84893911283 scopus 로고    scopus 로고
    • Marker Sequential Test (MaST) design
    • 24085774
    • Freidlin B, Korn EL, Gray R. Marker Sequential Test (MaST) design. Clin Trials. 2014;11:19-27.
    • (2014) Clin. Trials , vol.11 , pp. 19-27
    • Freidlin, B.1    Korn, E.L.2    Gray, R.3
  • 59
    • 34648840242 scopus 로고    scopus 로고
    • Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset
    • 17688238
    • Wang SJ, O'Neill RT, Hung HM. Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset. Pharm Stat. 2007;6:227-44.
    • (2007) Pharm. Stat. , vol.6 , pp. 227-244
    • Wang, S.J.1    O'Neill, R.T.2    Hung, H.M.3
  • 60
    • 77957962442 scopus 로고    scopus 로고
    • Adjusted significance levels for subgroup analyses in clinical trials
    • 20832503
    • Spiessens B, Debois M. Adjusted significance levels for subgroup analyses in clinical trials. Contemp Clin Trials. 2010;31:647-56.
    • (2010) Contemp. Clin. Trials , vol.31 , pp. 647-656
    • Spiessens, B.1    Debois, M.2
  • 61
    • 34547529442 scopus 로고    scopus 로고
    • A method for testing a prespecified subgroup in clinical trials
    • 17266164
    • Song Y, Chi GY. A method for testing a prespecified subgroup in clinical trials. Stat Med. 2007;26:3535-49.
    • (2007) Stat. Med. , vol.26 , pp. 3535-3549
    • Song, Y.1    Chi, G.Y.2
  • 62
    • 61749083299 scopus 로고    scopus 로고
    • A flexible strategy for testing subgroups and overall population
    • 18985704
    • Alosh M, Huque MF. A flexible strategy for testing subgroups and overall population. Stat Med. 2009;28:3-23.
    • (2009) Stat. Med. , vol.28 , pp. 3-23
    • Alosh, M.1    Huque, M.F.2
  • 63
    • 79957438038 scopus 로고    scopus 로고
    • Design and analysis considerations in clinical trials with a sensitive subpopulation
    • Zhao YD, Dmitrienko A, Tamura R. Design and analysis considerations in clinical trials with a sensitive subpopulation. Stat Biopharm Res. 2010;2:72-83.
    • (2010) Stat. Biopharm. Res. , vol.2 , pp. 72-83
    • Zhao, Y.D.1    Dmitrienko, A.2    Tamura, R.3
  • 64
    • 84864820652 scopus 로고    scopus 로고
    • Testing in a prespecified subgroup and the intent-to-treat population
    • 3378054 22723719
    • Rothmann MD, Zhang JJ, Lu L, Fleming TR. Testing in a prespecified subgroup and the intent-to-treat population. Drug Inf J. 2012;46:175-9.
    • (2012) Drug Inf. J. , vol.46 , pp. 175-179
    • Rothmann, M.D.1    Zhang, J.J.2    Lu, L.3    Fleming, T.R.4
  • 65
    • 78650828263 scopus 로고    scopus 로고
    • Hypothesis testing in a confirmatory Phase III trial with a possible subset effect
    • Chen C, Beckman RA. Hypothesis testing in a confirmatory Phase III trial with a possible subset effect. Stat Biopharm Res. 2009;1:431-40.
    • (2009) Stat. Biopharm. Res. , vol.1 , pp. 431-440
    • Chen, C.1    Beckman, R.A.2
  • 66
    • 84891781670 scopus 로고    scopus 로고
    • Bayesian assessment of the influence and interaction conditions in multipopulation tailoring clinical trials
    • 24392980
    • Millen BA, Dmitrienko A, Song G. Bayesian assessment of the influence and interaction conditions in multipopulation tailoring clinical trials. J Biopharm Stat. 2014;24:94-109.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 94-109
    • Millen, B.A.1    Dmitrienko, A.2    Song, G.3
  • 67
    • 78651263671 scopus 로고    scopus 로고
    • A Bayesian subgroup analysis with a zero-enriched Polya Urn scheme
    • 1:STN:280:DC%2BC3M7gs1Gmsg%3D%3D 21225894
    • Sivaganesan S, Laud PW, Muller P. A Bayesian subgroup analysis with a zero-enriched Polya Urn scheme. Stat Med. 2011;30:312-23.
    • (2011) Stat. Med. , vol.30 , pp. 312-323
    • Sivaganesan, S.1    Laud, P.W.2    Muller, P.3
  • 68
    • 84903775882 scopus 로고    scopus 로고
    • Randomized reverse marker strategy design for prospective biomarker validation
    • 4107176 24639051
    • Eng KH. Randomized reverse marker strategy design for prospective biomarker validation. Stat Med. 2014;33:3089-99.
    • (2014) Stat. Med. , vol.33 , pp. 3089-3099
    • Eng, K.H.1
  • 71
    • 84924917713 scopus 로고    scopus 로고
    • EMA/CHMP/539146/2013, Committee for Medicinal Products for Human Use CHMP
    • EMA/CHMP/539146/2013, Committee for Medicinal Products for Human Use CHMP. Guideline on the investigation of subgroups in confirmatory clinical trials. 2014. http://www.ema.europa.eu/docs/en-GB/document-library/Scientific-guideline/2014/02/WC500160523.pdf.
    • (2014) Guideline on the Investigation of Subgroups in Confirmatory Clinical Trials
  • 72
    • 80051894060 scopus 로고    scopus 로고
    • Subgroup identification based on differential effect search - A recursive partitioning method for establishing response to treatment in patient subpopulations
    • 21786278
    • Lipkovich I, Dmitrienko A, Denne J, Enas G. Subgroup identification based on differential effect search - a recursive partitioning method for establishing response to treatment in patient subpopulations. Stat Med. 2011;30:2601-21.
    • (2011) Stat. Med. , vol.30 , pp. 2601-2621
    • Lipkovich, I.1    Dmitrienko, A.2    Denne, J.3    Enas, G.4
  • 73
    • 84891758815 scopus 로고    scopus 로고
    • Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES
    • 24392982
    • Lipkovich I, Dmitrienko A. Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES. JBiopharmStat. 2014;24:130-53.
    • (2014) J.Biopharm.Stat , vol.24 , pp. 130-153
    • Lipkovich, I.1    Dmitrienko, A.2
  • 74
    • 80053563163 scopus 로고    scopus 로고
    • Subgroup identification from randomized clinical trial data
    • 21815180
    • Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from randomized clinical trial data. Stat Med. 2011;30:2867-80.
    • (2011) Stat. Med. , vol.30 , pp. 2867-2880
    • Foster, J.C.1    Taylor, J.M.2    Ruberg, S.J.3
  • 77
    • 84920260494 scopus 로고    scopus 로고
    • A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment-subgroup interactions
    • Doove LL, Dusseldorp E, Van DK, Van M I. A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment-subgroup interactions. Adv Data Anal Classif. 2014;8:403-25.
    • (2014) Adv. Data Anal. Classif. , vol.8 , pp. 403-425
    • Doove, L.L.1    Dusseldorp, E.2    Van, D.K.3    Van M, I.4
  • 79
    • 77956661141 scopus 로고    scopus 로고
    • Combining an additive and tree-based regression model simultaneously: STIMA
    • Dusseldorp E, Conversano C, Van Os BJ. Combining an additive and tree-based regression model simultaneously: STIMA. J Comput Graph Stat. 2010;19:514-30.
    • (2010) J. Comput. Graph. Stat. , vol.19 , pp. 514-530
    • Dusseldorp, E.1    Conversano, C.2    Van Os, B.J.3
  • 80
    • 78649932986 scopus 로고    scopus 로고
    • The mean does not mean as much anymore: Finding sub-groups for tailored therapeutics
    • 20667935
    • Ruberg SJ, Chen L, Wang Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clin Trials. 2010;7:574-83.
    • (2010) Clin. Trials , vol.7 , pp. 574-583
    • Ruberg, S.J.1    Chen, L.2    Wang, Y.3
  • 81
    • 84890203588 scopus 로고    scopus 로고
    • Qualitative interaction trees: A tool to identify qualitative treatment-subgroup interactions. Stat
    • Dusseldorp E, Van M I. Qualitative interaction trees: a tool to identify qualitative treatment-subgroup interactions. Stat. Med. 2014;33:219-37.
    • (2014) Med , vol.33 , pp. 219-237
    • Dusseldorp, E.1    Van M, I.2
  • 82
    • 84926513964 scopus 로고    scopus 로고
    • A regression tree approach to identifying subgroups with differential treatment effects
    • 25656439
    • Loh WY, He X, Man M. A regression tree approach to identifying subgroups with differential treatment effects. Stat Med. 2015;34:1818-33.
    • (2015) Stat. Med. , vol.34 , pp. 1818-1833
    • Loh, W.Y.1    He, X.2    Man, M.3
  • 83
    • 84891759350 scopus 로고    scopus 로고
    • A Bayesian approach to subgroup identification
    • 24392981
    • Berger JO, Wang X, Shen L. A Bayesian approach to subgroup identification. J Biopharm Stat. 2014;24:110-29.
    • (2014) J. Biopharm. Stat. , vol.24 , pp. 110-129
    • Berger, J.O.1    Wang, X.2    Shen, L.3
  • 84
    • 84872497643 scopus 로고    scopus 로고
    • Stratification of randomization is not required for a pre-specified subgroup analysis
    • 23281052
    • Kaiser LD. Stratification of randomization is not required for a pre-specified subgroup analysis. Pharm Stat. 2013;12:43-7.
    • (2013) Pharm. Stat. , vol.12 , pp. 43-47
    • Kaiser, L.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.