메뉴 건너뛰기




Volumn 37, Issue 12, 2010, Pages 8371-8378

Least squares twin support vector hypersphere (LS-TSVH) for pattern recognition

Author keywords

Hypersphere Least squares; Newton downhill method; Pattern recognition; Support vector machine

Indexed keywords

LEAST SQUARES APPROXIMATIONS; NONLINEAR EQUATIONS; QUADRATIC PROGRAMMING; SUPPORT VECTOR MACHINES; VECTORS;

EID: 77957841364     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.05.045     Document Type: Article
Times cited : (33)

References (26)
  • 1
    • 33745834241 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Sciences
    • Blake, C. I., & Merz, C. J. (1998). UCI repository for machine learning databases.http://www.ics.uci.edu/mlearn/MLRepository.html . Irvine, CA: University of California, Department of Information and Computer Sciences.
    • (1998) UCI Repository for Machine Learning Databases.
    • Blake, C.I.1    Merz, C.J.2
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. N. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 6
    • 0038104242 scopus 로고    scopus 로고
    • Joint time-frequency-space classification of EEG in a brain-computer interface application
    • Ebrahimi, T., Garcia, G. N., & Vesin, J. M. (2003). Joint time-frequency-space classification of EEG in a brain-computer interface application. Journal on Applied Signal Processing, 1(7), 713-729.
    • (2003) Journal on Applied Signal Processing , vol.1 , Issue.7 , pp. 713-729
    • Ebrahimi, T.1    Garcia, G.N.2    Vesin, J.M.3
  • 8
    • 0033720879 scopus 로고    scopus 로고
    • Support vector machine for regression and applications to financial forecasting
    • Como, Italy, IEEE-INNS-ENNS
    • Ince, H., & Trafalis, T. B. (2002). Support vector machine for regression and applications to financial forecasting. In International joint conference on neural networks (IJCNN02). Como, Italy, IEEE-INNS-ENNS.
    • (2002) International Joint Conference on Neural Networks (IJCNN02)
    • Ince, H.1    Trafalis, T.B.2
  • 10
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Chemnitz, Germany
    • Joachims, T., Ndellec, C., & Rouveriol, C. (1998). Text categorization with support vector machines: Learning with many relevant features. In European conference on machine learning No.10 (Vol. 1398, pp. 137-142). Chemnitz, Germany.
    • (1998) European Conference on Machine Learning , vol.1398 , Issue.10 , pp. 137-142
    • Joachims, T.1    Ndellec, C.2    Rouveriol, C.3
  • 11
    • 0033640690 scopus 로고    scopus 로고
    • A fast iterative nearest point algorithm for support vector machine classifier design
    • Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., et al. (2000). A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Transactions on Neural Networks, 11(1), 124-136.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 124-136
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3
  • 12
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., et al. (2001). Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13(3), 637-649.
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3
  • 13
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • Kumar, M. A., & Gopal, M. (2008). Application of smoothing technique on twin support vector machines. Pattern Recognition Letters, 29, 1842-1848.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 14
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar, M. A., & Gopal, M. (2009). Least squares twin support vector machines for pattern classification. Expert Systems with Applications, 36(4), 7535-7543.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7535-7543
    • Kumar, M.A.1    Gopal, M.2
  • 16
    • 85030580868 scopus 로고    scopus 로고
    • MATLAB User's Guide.The MathWorks, Inc., 1994-2001
    • MATLAB, User's Guide. The MathWorks, Inc., 1994-2001.< http://www.mathworks.com> .
  • 17
    • 33646516358 scopus 로고    scopus 로고
    • A geometric approach to support vector machine (SVM) classification
    • Mavroforakis, M. E., & Theodoridis, S. (2007). A geometric approach to support vector machine (SVM) classification. IEEE Transactions on Neural Networks, 17(3), 671-682.
    • (2007) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 671-682
    • Mavroforakis, M.E.1    Theodoridis, S.2
  • 20
    • 85030590612 scopus 로고    scopus 로고
    • Twin support vector hypersphere (TSVH) classifier for pattern recognition
    • (submitted for publication
    • Peng, X. (submitted for publication). Twin support vector hypersphere (TSVH) classifier for pattern recognition. Neural Networks.
    • Neural Networks
    • Peng, X.1
  • 21
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf C. J. C. Burges, & A. J. Smola (Eds.),Cambridge, MA: MIT Press
    • Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 185-2008). Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-2008
    • Platt, J.1
  • 23
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 24
    • 35448932022 scopus 로고    scopus 로고
    • A general soft method for learning SVM classifiers with L1-norm penalty
    • Tao, Q., Wu, G., & Wang, J. (2008). A general soft method for learning SVM classifiers with L1-norm penalty. Pattern Recognition, 41, 939-948.
    • (2008) Pattern Recognition , vol.41 , pp. 939-948
    • Tao, Q.1    Wu, G.2    Wang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.