메뉴 건너뛰기




Volumn 30, Issue 2, 2016, Pages 342-371

General factorization framework for context-aware recommendations

Author keywords

Collaborative filtering; Context awareness; Factorization; General framework; Implicit feedback; Model comparison; Recommender systems

Indexed keywords

COLLABORATIVE FILTERING; FACTORIZATION; RECOMMENDER SYSTEMS;

EID: 84957942779     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-015-0417-y     Document Type: Article
Times cited : (99)

References (30)
  • 1
    • 72249107946 scopus 로고    scopus 로고
    • Context-aware recommender systems. In: Recsys’08: ACM conference on recommender systems
    • Adomavicius G, Tuzhilin A (2008) Context-aware recommender systems. In: Recsys’08: ACM conference on recommender systems. pp 335–336
    • (2008) pp 335–336
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 13844254250 scopus 로고    scopus 로고
    • Incorporating contextual information in recommender systems using a multidimensional approach
    • Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A (2005) Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans Inf Syst 23(1):103–145
    • (2005) ACM Trans Inf Syst , vol.23 , Issue.1 , pp. 103-145
    • Adomavicius, G.1    Sankaranarayanan, R.2    Sen, S.3    Tuzhilin, A.4
  • 3
    • 49749086487 scopus 로고    scopus 로고
    • Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In: ICDM’07: IEEE international conference on data mining
    • Bell R, Koren Y (2007) Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In: ICDM’07: IEEE international conference on data mining. pp 43–52
    • (2007) pp 43–52
    • Bell, R.1    Koren, Y.2
  • 7
    • 84873429648 scopus 로고    scopus 로고
    • SVDFeature: a toolkit for feature-based collaborative filtering
    • Chen T, Zhang W, Lu Q, Chen K, Zheng Z, Yu Y (2012) SVDFeature: a toolkit for feature-based collaborative filtering. J Mach Learn Res 13:3619–3622
    • (2012) J Mach Learn Res , vol.13 , pp. 3619-3622
    • Chen, T.1    Zhang, W.2    Lu, Q.3    Chen, K.4    Zheng, Z.5    Yu, Y.6
  • 9
    • 84943605217 scopus 로고    scopus 로고
    • Factorization models for context-aware recommendations
    • Hidasi B (2014) Factorization models for context-aware recommendations. Infocommun J VI(4):27–34
    • (2014) Infocommun J , vol.VI , Issue.4 , pp. 27-34
    • Hidasi, B.1
  • 10
    • 84866860074 scopus 로고    scopus 로고
    • Tikk D (2012) Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback
    • Springer, Berlin
    • Hidasi B, Tikk D (2012) Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. In: ECML-PKDD’12, Part II, no. 7524 in LNCS. Springer, Berlin, pp 67-82
    • ECML-PKDD’12, Part II, no. 7524 in LNCS , pp. 67-82
    • Hidasi, B.1
  • 11
    • 84903631315 scopus 로고    scopus 로고
    • Context-aware recommendations from implicit data via scalable tensor factorization
    • Hidasi B, Tikk D (2013) Context-aware recommendations from implicit data via scalable tensor factorization. ArXiv e-prints
    • (2013) ArXiv e-prints
    • Hidasi, B.1    Tikk, D.2
  • 12
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets. In: ICDM’08: IEEE international conference on data mining
    • Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: ICDM’08: IEEE international conference on data mining. pp 263–272
    • (2008) pp 263–272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 13
    • 78649941975 scopus 로고    scopus 로고
    • Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. In: Recsys’10: ACM conference on recommender systems
    • Karatzoglou A, Amatriain X, Baltrunas L, Oliver N (2010) Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. In: Recsys’10: ACM conference on recommender systems. pp 79–86
    • (2010) pp 79–86
    • Karatzoglou, A.1    Amatriain, X.2    Baltrunas, L.3    Oliver, N.4
  • 14
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: SIGKDD’08: ACM international conference on knowledge discovery and data mining
    • Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: SIGKDD’08: ACM international conference on knowledge discovery and data mining. pp 426–434
    • (2008) pp 426–434
    • Koren, Y.1
  • 15
    • 80052883059 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • Ricci F, (ed), Springer, Berlin
    • Koren Y, Bell R (2011) Advances in collaborative filtering. In: Ricci F (ed) Recommender systems handbook. Springer, Berlin, pp 145–186
    • (2011) Recommender systems handbook , pp. 145-186
    • Koren, Y.1    Bell, R.2
  • 17
    • 78650116045 scopus 로고    scopus 로고
    • Adapting neighborhood and matrix factorization models for context aware recommendation. In: CAMRa’10: workshop on context-aware movie recommendation
    • Liu NN, Zhao BCM, Yang Q (2010) Adapting neighborhood and matrix factorization models for context aware recommendation. In: CAMRa’10: workshop on context-aware movie recommendation. pp 7–13
    • (2010) pp 7–13
    • Liu, N.N.1    Zhao, B.C.M.2    Yang, Q.3
  • 18
    • 84867389835 scopus 로고    scopus 로고
    • Enlister: Baidu’s recommender system for the biggest Chinese Q&A website. In: RecSys-12: proceedings of the 6th ACM conference on recommender systems
    • Liu Q, Chen T, Cai J, Yu D (2012) Enlister: Baidu’s recommender system for the biggest Chinese Q&A website. In: RecSys-12: proceedings of the 6th ACM conference on recommender systems. pp 285–288
    • (2012) pp 285–288
    • Liu, Q.1    Chen, T.2    Cai, J.3    Yu, D.4
  • 19
    • 84904581264 scopus 로고    scopus 로고
    • Gaussian process factorization machines for context-aware recommendations. In: SIGIR-14: ACM SIGIR conference on research & development in information retrieval
    • Nguyen TV, Karatzoglou A, Baltrunas L (2014) Gaussian process factorization machines for context-aware recommendations. In: SIGIR-14: ACM SIGIR conference on research & development in information retrieval. pp 63–72
    • (2014) pp 63–72
    • Nguyen, T.V.1    Karatzoglou, A.2    Baltrunas, L.3
  • 20
    • 57949113756 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of the KDD cup and workshop
    • Paterek A (2007) Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of the KDD cup and workshop. pp 5–8
    • (2007) pp 5–8
    • Paterek, A.1
  • 21
    • 72249096675 scopus 로고    scopus 로고
    • Recommending new movies: even a few ratings are more valuable than metadata. In: Recsys’09: ACM conference on recommender systems
    • Pilászy I, Tikk D (2009) Recommending new movies: even a few ratings are more valuable than metadata. In: Recsys’09: ACM conference on recommender systems. pp 93–100
    • (2009) pp 93–100
    • Pilászy, I.1    Tikk, D.2
  • 23
    • 84881117508 scopus 로고    scopus 로고
    • Scaling factorization machines to relational data. In: PVLDB’13: 39th international conference on very large data bases
    • Rendle S (2013) Scaling factorization machines to relational data. In: PVLDB’13: 39th international conference on very large data bases. pp 337–348
    • (2013) pp 337–348
    • Rendle, S.1
  • 24
    • 77950902603 scopus 로고    scopus 로고
    • Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM’10: ACM international conference on web search and data mining
    • Rendle S, Schmidt-Thieme L (2010) Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM’10: ACM international conference on web search and data mining. pp 81–90
    • (2010) pp 81–90
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 25
    • 78650134987 scopus 로고    scopus 로고
    • BPR: Bayesian personalized ranking from implicit feedback. In: UAI’09: 25th conference on uncertainty in artificial intelligence
    • Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) BPR: Bayesian personalized ranking from implicit feedback. In: UAI’09: 25th conference on uncertainty in artificial intelligence. pp 452–461
    • (2009) pp 452–461
    • Rendle, S.1    Freudenthaler, C.2    Gantner, Z.3    Schmidt-Thieme, L.4
  • 29
    • 84866601927 scopus 로고    scopus 로고
    • (2012) TFMAP: Optimizing MAP for top-N context-aware recommendation
    • ACM SIGIR conference on research and development in information retrieval: ACM
    • Shi Y, Karatzoglou A, Baltrunas L, Larson M, Hanjalic A, Oliver N (2012) TFMAP: Optimizing MAP for top-N context-aware recommendation. In: SIGIR-12: ACM SIGIR conference on research and development in information retrieval, ACM. pp 155–164
    • SIGIR-12 , pp. 155-164
    • Shi, Y.1    Karatzoglou, A.2    Baltrunas, L.3    Larson, M.4    Hanjalic, A.5    Oliver, N.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.