-
1
-
-
34948850364
-
A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
-
H. J. Ahn. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf. Sci., 178(1):37-51, 2008.
-
(2008)
Inf. Sci
, vol.178
, Issue.1
, pp. 37-51
-
-
Ahn, H.J.1
-
2
-
-
36849079891
-
Modeling relationships at multiple scales to improve accuracy of large recommender systems
-
New York, NY, USA, ACM
-
R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 95-104, New York, NY, USA, 2007. ACM.
-
(2007)
KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining
, pp. 95-104
-
-
Bell, R.1
Koren, Y.2
Volinsky, C.3
-
4
-
-
85024509216
-
-
New York, NY, USA, ACM Press
-
G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E. Lochbaum. Information retrieval using a singular value decomposition model of latent semantic structure. pages 465-480, New York, NY, USA, 1988. ACM Press.
-
(1988)
Information retrieval using a singular value decomposition model of latent semantic structure
, pp. 465-480
-
-
Furnas, G.W.1
Deerwester, S.2
Dumais, S.T.3
Landauer, T.K.4
Harshman, R.A.5
Streeter, L.A.6
Lochbaum, K.E.7
-
5
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1):5-53, 2004.
-
(2004)
ACM Transactions on Information Systems (TOIS)
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, J.1
Konstan, J.2
Terveen, L.3
Riedl, J.4
-
6
-
-
3042819722
-
Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
-
Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst., 22(1):116-142, 2004.
-
(2004)
ACM Trans. Inf. Syst
, vol.22
, Issue.1
, pp. 116-142
-
-
Huang, Z.1
Chen, H.2
Zeng, D.3
-
7
-
-
48249083902
-
Improving regularized singular value decomposition for collaborative filtering
-
A. Paterek. Improving regularized singular value decomposition for collaborative filtering. Proceedings of KDD Cup and Workshop, 2007.
-
(2007)
Proceedings of KDD Cup and Workshop
-
-
Paterek, A.1
-
8
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. 10th Int. Conf. on World Wide Web, pages 285-295, 2001.
-
(2001)
10th Int. Conf. on World Wide Web
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Reidl, J.4
-
9
-
-
70749101696
-
Incremental singular value decomposition algorithms for highly scalable recommender systems
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental singular value decomposition algorithms for highly scalable recommender systems. 5th Int. Conf. on Computer and Information Technology (ICCIT 2002), pages 399-404, 2002.
-
(2002)
5th Int. Conf. on Computer and Information Technology (ICCIT 2002)
, pp. 399-404
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
|