메뉴 건너뛰기




Volumn 23, Issue 2, 2016, Pages 1263-1282

Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications

Author keywords

2,3 Dialdehyde bacterial cellulose; Biodegradable; Biomimetic hydroxyapatite; Bone tissue regeneration; Laser perforation; Microporous scaffold; Nanotechnology

Indexed keywords

BACTERIA; BIOCOMPATIBILITY; BIODEGRADATION; BIOMECHANICS; BIOMIMETICS; BONE; CELL CULTURE; CELL ENGINEERING; CELLULOSE; HONEYCOMB STRUCTURES; HYDROGELS; HYDROXYAPATITE; MECHANICAL PROPERTIES; MICROPOROSITY; NANOCOMPOSITES; NANOTECHNOLOGY; OXIDATION; PORE SIZE; SODIUM COMPOUNDS; STEM CELLS; TISSUE; TISSUE REGENERATION;

EID: 84957033476     PISSN: 09690239     EISSN: 1572882X     Source Type: Journal    
DOI: 10.1007/s10570-016-0867-4     Document Type: Article
Times cited : (71)

References (67)
  • 1
    • 84895070057 scopus 로고    scopus 로고
    • Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants
    • COI: 1:CAS:528:DC%2BC2cXksFGhsw%3D%3D
    • Ahrem H et al (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353. doi:10.1016/j.actbio.2013.12.004
    • (2014) Acta Biomater , vol.10 , pp. 1341-1353
    • Ahrem, H.1
  • 2
    • 84886097251 scopus 로고    scopus 로고
    • Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen–hydroxyapatite-poly(L-lactide-co-ε-caprolactone) scaffold
    • Akkouch A, Zhang Z, Rouabhia M (2014) Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen–hydroxyapatite-poly(L-lactide-co-ε-caprolactone) scaffold. J Biomater Appl 28(6):922–936. doi:10.1177/0885328213486705
    • (2014) J Biomater Appl , vol.28 , Issue.6 , pp. 922-936
    • Akkouch, H.1    Zhang, Z.2    Rouabhia, M.3
  • 6
    • 84899765284 scopus 로고    scopus 로고
    • Comparison of nanocrystalline hydroxyapatite and synthetic resorbable hydroxyapatite graft in the treatment of intrabony defects: a clinical and radiographic study
    • Bansal M, Kaushik M, Khattak BBP, Sharma A (2014) Comparison of nanocrystalline hydroxyapatite and synthetic resorbable hydroxyapatite graft in the treatment of intrabony defects: a clinical and radiographic study. J Indian Soc Periodontol 18:213–219. doi:10.4103/0972-124X.131329
    • (2014) J Indian Soc Periodontol , vol.18 , pp. 213-219
    • Bansal, M.1    Kaushik, M.2    Khattak, B.B.P.3    Sharma, A.4
  • 7
    • 84862777217 scopus 로고    scopus 로고
    • Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration
    • COI: 1:CAS:528:DC%2BC38Xktlejtb8%3D
    • Berner A et al (2012) Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res 347:603–612. doi:10.1007/s00441-011-1298-z
    • (2012) Cell Tissue Res , vol.347 , pp. 603-612
    • Berner, A.1
  • 8
    • 77949652722 scopus 로고    scopus 로고
    • Electrospinning: a fascinating fiber fabrication technique
    • COI: 1:CAS:528:DC%2BC3cXjvFClsL0%3D
    • Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi:10.1016/j.biotechadv.2010.01.004
    • (2010) Biotechnol Adv , vol.28 , pp. 325-347
    • Bhardwaj, N.1    Kundu, S.C.2
  • 10
    • 84890381496 scopus 로고    scopus 로고
    • Bone tissue engineering using 3D printing
    • COI: 1:CAS:528:DC%2BC3sXhvFOrsrnO
    • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504. doi:10.1016/j.mattod.2013.11.017
    • (2013) Mater Today , vol.16 , pp. 496-504
    • Bose, S.1    Vahabzadeh, S.2    Bandyopadhyay, A.3
  • 11
    • 84875220429 scopus 로고    scopus 로고
    • Chitosan-based biomaterials for tissue engineering
    • COI: 1:CAS:528:DC%2BC3sXislyrs74%3D
    • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. doi:10.1016/j.eurpolymj.2012.12.009
    • (2013) Eur Polym J , vol.49 , pp. 780-792
    • Croisier, F.1    Jérôme, C.2
  • 13
    • 78651480297 scopus 로고    scopus 로고
    • Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering
    • COI: 1:CAS:528:DC%2BC3MXjt1Sku7g%3D
    • El-Ayoubi R, Degrandpre C, DiRaddo R, Yousefi A-M, Lavigne P (2011) Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl 25:429–444. doi:10.1177/0885328209355332
    • (2011) J Biomater Appl , vol.25 , pp. 429-444
    • El-Ayoubi, R.1    Degrandpre, C.2    DiRaddo, R.3    Yousefi, A.-M.4    Lavigne, P.5
  • 14
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • COI: 1:CAS:528:DC%2BD28Xpt1aktbg%3D
    • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi:10.1016/j.cell.2006.06.044
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 15
    • 0017281928 scopus 로고
    • Mechanical properties and histology of cortical bone from younger and older men
    • COI: 1:STN:280:DyaE287ot1Ggsw%3D%3D
    • Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–11. doi:10.1002/ar.1091850102
    • (1976) Anat Rec , vol.185 , pp. 1-11
    • Evans, F.G.1
  • 16
    • 84875228750 scopus 로고    scopus 로고
    • Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds
    • COI: 1:CAS:528:DC%2BC3sXhsVylsrk%3D
    • Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C 33:1935–1944. doi:10.1016/j.msec.2012.12.100
    • (2013) Mater Sci Eng C , vol.33 , pp. 1935-1944
    • Favi, P.M.1    Benson, R.S.2    Neilsen, N.R.3    Hammonds, R.L.4    Bates, C.C.5    Stephens, C.P.6    Dhar, M.S.7
  • 17
    • 84991976288 scopus 로고    scopus 로고
    • Proliferation and osteogenic differentiation of mesenchymal stem cells on biodegradable calcium-deficient hydroxyapatite tubular bacterial cellulose composites
    • Favi PM, Dhar MS, Neilsen NR, Benson RS (2014) Proliferation and osteogenic differentiation of mesenchymal stem cells on biodegradable calcium-deficient hydroxyapatite tubular bacterial cellulose composites. MRS Proc. doi:10.1557/opl.2014.287
    • (2014) MRS Proc
    • Favi, P.M.1    Dhar, M.S.2    Neilsen, N.R.3    Benson, R.S.4
  • 18
    • 0025110979 scopus 로고
    • Acetobacter cellulose pellicle as a temporary skin substitute
    • Fontana J et al (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264. doi:10.1007/bf02920250
    • (1990) Appl Biochem Biotechnol , vol.24-25 , pp. 253-264
    • Fontana, J.1
  • 19
    • 75749106242 scopus 로고    scopus 로고
    • Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen–glycosaminoglycan scaffold
    • COI: 1:CAS:528:DC%2BC3cXhtVSgtr4%3D
    • Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen–glycosaminoglycan scaffold. J Biomed Mater Res A 92A:1066–1077. doi:10.1002/jbm.a.32361
    • (2010) J Biomed Mater Res A , vol.92A , pp. 1066-1077
    • Harley, B.A.1    Lynn, A.K.2    Wissner-Gross, Z.3    Bonfield, W.4    Yannas, I.V.5    Gibson, L.J.6
  • 21
    • 0041559949 scopus 로고    scopus 로고
    • RGD modified polymers: biomaterials for stimulated cell adhesion and beyond
    • COI: 1:CAS:528:DC%2BD3sXmtFansLg%3D
    • Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415. doi:10.1016/S0142-9612(03)00343-0
    • (2003) Biomaterials , vol.24 , pp. 4385-4415
    • Hersel, U.1    Dahmen, C.2    Kessler, H.3
  • 22
    • 84899444142 scopus 로고    scopus 로고
    • Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics
    • Hu J, Zhou Y, Huang L, Liu J, Lu H (2014) Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskelet Disord 15:114. doi:10.1186/1471-2474-15-114
    • (2014) BMC Musculoskelet Disord , vol.15 , pp. 114
    • Hu, J.1    Zhou, Y.2    Huang, L.3    Liu, J.4    Lu, H.5
  • 23
    • 84991961450 scopus 로고    scopus 로고
    • J Biomed Mater Res B, 2011, 97B and US Patent No
    • Hu J et al (2011) J Biomed Mater Res B, 2011, 97B and US Patent No. 20100172889
    • (2011) 20100172889
    • Hu, J.1
  • 24
    • 33747064167 scopus 로고    scopus 로고
    • Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel
    • COI: 1:CAS:528:DC%2BD28XltVOrtrk%3D
    • Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670. doi:10.1016/j.biomaterials.2006.04.032
    • (2006) Biomaterials , vol.27 , pp. 4661-4670
    • Hutchens, S.A.1    Benson, R.S.2    Evans, B.R.3    O’Neill, H.M.4    Rawn, C.J.5
  • 25
    • 70349129581 scopus 로고    scopus 로고
    • A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration
    • COI: 1:CAS:528:DC%2BD1MXhtVygsL%2FF
    • Hutchens S, Benson R, Evans B, Rawn C, O’Neill H (2009) A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration. Cellulose 16:887–898. doi:10.1007/s10570-009-9300-6
    • (2009) Cellulose , vol.16 , pp. 887-898
    • Hutchens, S.1    Benson, R.2    Evans, B.3    Rawn, C.4    O’Neill, H.5
  • 26
    • 37349007769 scopus 로고    scopus 로고
    • Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative
    • COI: 1:CAS:528:DC%2BD2sXhsVKgsL7N
    • Jalota S, Bhaduri SB, Tas AC (2008) Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater Sci Eng C 28:129–140. doi:10.1016/j.msec.2007.10.058
    • (2008) Mater Sci Eng C , vol.28 , pp. 129-140
    • Jalota, S.1    Bhaduri, S.B.2    Tas, A.C.3
  • 27
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • COI: 1:CAS:528:DC%2BD2MXjs1Wnsrc%3D
    • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. doi:10.1016/j.biomaterials.2005.02.002
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 28
    • 84884208870 scopus 로고    scopus 로고
    • Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating
    • Kim B-S, Kang HJ, Lee J (2013) Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B 101:1302–1309. doi:10.1002/jbm.b.32943
    • (2013) J Biomed Mater Res B , vol.101 , pp. 1302-1309
    • Kim, B.-S.1    Kang, H.J.2    Lee, J.3
  • 29
    • 84989834002 scopus 로고    scopus 로고
    • Current technology of beam profile measurement
    • Dickey FM, (ed), CRC Press, Taylor & Francis Group, Boca Raton, FL
    • Kirkham KD, Roundy CB (2014) Current technology of beam profile measurement. In: Dickey FM (ed) Laser beam shaping: theory and techniques, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 463–524
    • (2014) Laser beam shaping: theory and techniques , pp. 463-524
    • Kirkham, K.D.1    Roundy, C.B.2
  • 30
    • 0035505468 scopus 로고    scopus 로고
    • Bacterial synthesized cellulose—artificial blood vessels for microsurgery
    • COI: 1:CAS:528:DC%2BD3MXoslCjsbY%3D
    • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:10.1016/s0079-6700(01)00021-1
    • (2001) Prog Polym Sci , vol.26 , pp. 1561-1603
    • Klemm, D.1    Schumann, D.2    Udhardt, U.3    Marsch, S.4
  • 31
    • 0001802693 scopus 로고    scopus 로고
    • Hydrogen bonds in cellulose and cellulose derivatives
    • Dumitriu S, (ed), vol Dumitriu S. Marcel Dekker Inc, New York, NY
    • Kondo T (1998) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. vol Dumitriu S. Marcel Dekker Inc, New York, NY, pp 131–172
    • (1998) Polysaccharides: structural diversity and functional versatility , pp. 131-172
    • Kondo, T.1
  • 32
    • 0035044007 scopus 로고    scopus 로고
    • Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis
    • Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83-A(Suppl 1 (Pt 2)):S105–S115
    • (2001) J Bone Joint Surg Am , vol.83-A , pp. S105-S115
    • Kuboki, Y.1    Jin, Q.2    Takita, H.3
  • 33
    • 0021352535 scopus 로고
    • Ultrastructural study of the formation of psammoma bodies in fibroblastic meningioma
    • COI: 1:STN:280:DyaL2c7jsl2nuw%3D%3D
    • Kubota T, Sato K, Yamamoto S, Hirano A (1984) Ultrastructural study of the formation of psammoma bodies in fibroblastic meningioma. J Neurosurg 60:512–517. doi:10.3171/jns.1984.60.3.0512
    • (1984) J Neurosurg , vol.60 , pp. 512-517
    • Kubota, T.1    Sato, K.2    Yamamoto, S.3    Hirano, A.4
  • 34
    • 0346752054 scopus 로고    scopus 로고
    • Topical treatment of non-healing venous leg ulcers by cellulose membrane
    • Kucharzewski M, Slezak A, Franek A (2003) Topical treatment of non-healing venous leg ulcers by cellulose membrane. Phlebologie 32:138–169
    • (2003) Phlebologie , vol.32 , pp. 138-169
    • Kucharzewski, M.1    Slezak, A.2    Franek, A.3
  • 35
    • 0034152369 scopus 로고    scopus 로고
    • Tissue engineered bone formation using chitosan/tricalcium phosphate sponges
    • COI: 1:CAS:528:DC%2BD3cXjsV2gsLY%3D
    • Lee YM et al (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71:410–417. doi:10.1902/jop.2000.71.3.410
    • (2000) J Periodontol , vol.71 , pp. 410-417
    • Lee, Y.M.1
  • 36
    • 67349138209 scopus 로고    scopus 로고
    • Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds
    • COI: 1:CAS:528:DC%2BD1MXmtVaqsrg%3D
    • Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi:10.1016/j.msec.2009.01.006
    • (2009) Mater Sci Eng C , vol.29 , pp. 1635-1642
    • Li, J.1    Wan, Y.2    Li, L.3    Liang, H.4    Wang, J.5
  • 37
    • 84865684049 scopus 로고    scopus 로고
    • Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers
    • COI: 1:CAS:528:DC%2BC38XhtFShtLnN
    • Li K, Wang J, Liu X, Xiong X, Liu H (2012) Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers. Carbohydr Polym 90:1573–1581. doi:10.1016/j.carbpol.2012.07.033
    • (2012) Carbohydr Polym , vol.90 , pp. 1573-1581
    • Li, K.1    Wang, J.2    Liu, X.3    Xiong, X.4    Liu, H.5
  • 38
    • 78650710295 scopus 로고    scopus 로고
    • Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: from 2D to 3D printed structures
    • Liu H, Webster TJ (2011) Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: from 2D to 3D printed structures. Mater Sci Eng C 31:77–89. doi:10.1016/j.msec.2010.07.013
    • (2011) Mater Sci Eng C , vol.31 , pp. 77-89
    • Liu, H.1    Webster, T.J.2
  • 40
    • 84892689409 scopus 로고    scopus 로고
    • Concise review: cell-based strategies in bone tissue engineering and regenerative medicine
    • COI: 1:CAS:528:DC%2BC2cXkslakt7Y%3D
    • Ma J et al (2014) Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med 3:98–107. doi:10.5966/sctm.2013-0126
    • (2014) Stem Cells Transl Med , vol.3 , pp. 98-107
    • Ma, J.1
  • 42
    • 70449088920 scopus 로고    scopus 로고
    • The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering
    • COI: 1:CAS:528:DC%2BD1MXhsVWnsbvE
    • Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. doi:10.1016/j.biomaterials.2009.09.063
    • (2010) Biomaterials , vol.31 , pp. 461-466
    • Murphy, C.M.1    Haugh, M.G.2    O’Brien, F.J.3
  • 43
    • 84912561353 scopus 로고    scopus 로고
    • Bone tissue engineering and regenerative medicine: targeting pathological fractures
    • Nguyen DT, Burg KJL (2015) Bone tissue engineering and regenerative medicine: targeting pathological fractures. J Biomed Mater Res A 103:420–429. doi:10.1002/jbm.a.35139
    • (2015) J Biomed Mater Res A , vol.103 , pp. 420-429
    • Nguyen, D.T.1    Burg, K.J.L.2
  • 44
    • 77954604320 scopus 로고    scopus 로고
    • Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation
    • COI: 1:CAS:528:DC%2BC3cXlslymu7Y%3D
    • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700. doi:10.1021/bm100214b
    • (2010) Biomacromolecules , vol.11 , pp. 1696-1700
    • Okita, Y.1    Saito, T.2    Isogai, A.3
  • 45
    • 0003221593 scopus 로고
    • Control of depolymerisation during the preparation of reduced dialdehyde cellulose
    • COI: 1:CAS:528:DyaL1cXlsFWksrY%3D
    • Painter TJ (1988) Control of depolymerisation during the preparation of reduced dialdehyde cellulose. Carbohydr Res 179:259–268. doi:10.1016/0008-6215(88)84123-5
    • (1988) Carbohydr Res , vol.179 , pp. 259-268
    • Painter, T.J.1
  • 46
    • 79957625010 scopus 로고    scopus 로고
    • Collagen-based biomaterials for tissue engineering applications
    • COI: 1:CAS:528:DC%2BC3cXjvFentrw%3D
    • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887
    • (2010) Materials , vol.3 , pp. 1863-1887
    • Parenteau-Bareil, R.1    Gauvin, R.2    Berthod, F.3
  • 47
    • 84923000595 scopus 로고    scopus 로고
    • Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
    • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. doi:10.1002/adma.201403354
    • (2015) Adv Mater
    • Pina, S.1    Oliveira, J.M.2    Reis, R.L.3
  • 48
    • 0027109486 scopus 로고
    • Estimation of dialdehyde groups in 2,3-dialdehyde bead cellulose
    • COI: 1:CAS:528:DyaK38XmtFCktL4%3D
    • Pommerening K, Rein H, Betram D, Muller R (1992) Estimation of dialdehyde groups in 2,3-dialdehyde bead cellulose. Carboohydr Res 233:219–223
    • (1992) Carboohydr Res , vol.233 , pp. 219-223
    • Pommerening, K.1    Rein, H.2    Betram, D.3    Muller, R.4
  • 49
    • 40949153388 scopus 로고    scopus 로고
    • Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering
    • COI: 1:CAS:528:DC%2BD1cXjvF2rtrk%3D
    • Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554. doi:10.1016/j.msec.2007.11.011
    • (2008) Mater Sci Eng C , vol.28 , pp. 549-554
    • Rambo, C.R.1    Recouvreux, D.O.S.2    Carminatti, C.A.3    Pitlovanciv, A.K.4    Antônio, R.V.5    Porto, L.M.6
  • 50
    • 33645099377 scopus 로고    scopus 로고
    • Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold
    • Roy-Chowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. J Biomed Mater Res A 76A:300–309. doi:10.1002/jbm.a.30503
    • (2006) J Biomed Mater Res A , vol.76A , pp. 300-309
    • Roy-Chowdhury, P.1    Kumar, V.2
  • 51
    • 77649181927 scopus 로고    scopus 로고
    • Two-dimensional Fourier transform infrared spectroscopy applied to cellulose and paper
    • Dumitriu S, (ed), CRC Press Taylor & Francis Group, Boca Raton, FL
    • Salmen L, Akerholm M, Hinterstoisser B (2005) Two-dimensional Fourier transform infrared spectroscopy applied to cellulose and paper. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 159–187
    • (2005) Polysaccharides: structural diversity and functional versatility , pp. 159-187
    • Salmen, L.1    Akerholm, M.2    Hinterstoisser, B.3
  • 53
    • 0001352957 scopus 로고
    • Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum
    • Schrarnrn M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129
    • (1954) J Gen Microbiol , vol.11 , pp. 123-129
    • Schrarnrn, M.1    Hestrin, S.2
  • 54
    • 84908245495 scopus 로고    scopus 로고
    • Evaluation of skeletal tissue repair, part 1: assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model
    • COI: 1:CAS:528:DC%2BC2cXhtFSrurfM
    • Smith EL et al (2014) Evaluation of skeletal tissue repair, part 1: assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomater 10:4186–4196. doi:10.1016/j.actbio.2014.06.011
    • (2014) Acta Biomater , vol.10 , pp. 4186-4196
    • Smith, E.L.1
  • 55
    • 84906572761 scopus 로고    scopus 로고
    • Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity
    • Suárez-González D et al (2013) Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity. Tissue Eng A 20:2077–2087. doi:10.1089/ten.tea.2013.0358
    • (2013) Tissue Eng A , vol.20 , pp. 2077-2087
    • Suárez-González, D.1
  • 56
    • 3242655507 scopus 로고    scopus 로고
    • Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
    • COI: 1:CAS:528:DC%2BD2cXlvFarsrg%3D
    • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi:10.1016/j.biomaterials.2004.02.049
    • (2005) Biomaterials , vol.26 , pp. 419-431
    • Svensson, A.1    Nicklasson, E.2    Harrah, T.3    Panilaitis, B.4    Kaplan, D.L.5    Brittberg, M.6    Gatenholm, P.7
  • 57
    • 84901926330 scopus 로고    scopus 로고
    • Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of l-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering
    • COI: 1:CAS:528:DC%2BC2cXht1WltLfM
    • Torabinejad B, Mohammadi-Rovshandeh J, Davachi SM, Zamanian A (2014) Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of l-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 42:199–210. doi:10.1016/j.msec.2014.05.003
    • (2014) Mater Sci Eng C , vol.42 , pp. 199-210
    • Torabinejad, B.1    Mohammadi-Rovshandeh, J.2    Davachi, S.M.3    Zamanian, A.4
  • 58
    • 0021491389 scopus 로고
    • Direct electron microscopy studies of the bone—hydroxylapatite interface
    • COI: 1:CAS:528:DyaL2cXmtlGmsbY%3D
    • Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone–hydroxylapatite interface. J Biomed Mater Res 18:719–726. doi:10.1002/jbm.820180702
    • (1984) J Biomed Mater Res , vol.18 , pp. 719-726
    • Tracy, B.M.1    Doremus, R.H.2
  • 59
    • 0031045696 scopus 로고    scopus 로고
    • Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis
    • COI: 1:CAS:528:DyaK2sXislSqsLo%3D
    • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324
    • (1997) J Biochem , vol.121 , pp. 317-324
    • Tsuruga, E.1    Takita, H.2    Itoh, H.3    Wakisaka, Y.4    Kuboki, Y.5
  • 60
    • 84871185486 scopus 로고    scopus 로고
    • Production of tubular porous hydroxyapatite using electrophoretic deposition
    • COI: 1:CAS:528:DC%2BC38XhvVKltrrF
    • Ustundag CB, Kaya F, Kamitakahara M, Kaya C, Ioku K (2012) Production of tubular porous hydroxyapatite using electrophoretic deposition. J Ceram Soc Jpn 120:569–573
    • (2012) J Ceram Soc Jpn , vol.120 , pp. 569-573
    • Ustundag, C.B.1    Kaya, F.2    Kamitakahara, M.3    Kaya, C.4    Ioku, K.5
  • 61
    • 0036107503 scopus 로고    scopus 로고
    • Oxidation of cellulose under controlled conditions
    • COI: 1:CAS:528:DC%2BD38Xjsl2hu7Y%3D
    • Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stabil 77:25–27
    • (2002) Polym Degrad Stabil , vol.77 , pp. 25-27
    • Varma, A.J.1    Kulkarni, M.P.2
  • 62
    • 34247179163 scopus 로고    scopus 로고
    • Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications
    • COI: 1:CAS:528:DC%2BD2sXkvVWmsbw%3D
    • Wan YZ et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864. doi:10.1016/j.msec.2006.10.002
    • (2007) Mater Sci Eng C , vol.27 , pp. 855-864
    • Wan, Y.Z.1
  • 63
    • 84872745290 scopus 로고    scopus 로고
    • Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering
    • Wang J, Chunxi Y, Yizao W, Honglin L, Fang H, Kerong D, Yuan H (2011) Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater 11:173–180. doi:10.1080/1539445X.2011.611204
    • (2011) Soft Mater , vol.11 , pp. 173-180
    • Wang, J.1    Chunxi, Y.2    Yizao, W.3    Honglin, L.4    Fang, H.5    Kerong, D.6    Yuan, H.7
  • 64
    • 0034084101 scopus 로고    scopus 로고
    • Enhanced functions of osteoblasts on nanophase ceramics
    • COI: 1:CAS:528:DC%2BD3cXkvFCrsb8%3D
    • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000a) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810. doi:10.1016/S0142-9612(00)00075-2
    • (2000) Biomaterials , vol.21 , pp. 1803-1810
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3    Siegel, R.W.4    Bizios, R.5
  • 65
    • 0034609621 scopus 로고    scopus 로고
    • Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics
    • COI: 1:CAS:528:DC%2BD3cXkslagtL4%3D
    • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000b) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483. doi:10.1002/1097-4636(20000905)51:3<475:aid-jbm23>3.0.co;2-9
    • (2000) J Biomed Mater Res , vol.51 , pp. 475-483
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3    Siegel, R.W.4    Bizios, R.5
  • 66
    • 84907874332 scopus 로고    scopus 로고
    • Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model
    • COI: 1:CAS:528:DC%2BC2cXhslemt7zO
    • Wegman F, Geuze RE, van der Helm YJ, Cumhur Öner F, Dhert WJA, Alblas J (2014) Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model. J Tissue Eng Regen Med 8:763–770. doi:10.1002/term.1571
    • (2014) J Tissue Eng Regen Med , vol.8 , pp. 763-770
    • Wegman, F.1    Geuze, R.E.2    van der Helm, Y.J.3    Cumhur Öner, F.4    Dhert, W.J.A.5    Alblas, J.6
  • 67
    • 84890832151 scopus 로고    scopus 로고
    • Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation
    • COI: 1:CAS:528:DC%2BC3sXhvFKqtbjF
    • Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv 4:3998–4009. doi:10.1039/C3RA45407J
    • (2014) RSC Adv , vol.4 , pp. 3998-4009
    • Wu, J.1    Zheng, Y.2    Yang, Z.3    Lin, Q.4    Qiao, K.5    Chen, X.6    Peng, Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.