메뉴 건너뛰기




Volumn 23, Issue 2, 2016, Pages 147-154

Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors

Author keywords

[No Author keywords available]

Indexed keywords

DNA; HEAT SHOCK TRANSCRIPTION FACTOR; HEAT SHOCK TRANSCRIPTION FACTOR 2; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; DNA BINDING PROTEIN; HEAT SHOCK PROTEIN; HSF2 PROTEIN, HUMAN;

EID: 84956790879     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3150     Document Type: Article
Times cited : (65)

References (60)
  • 1
    • 84938209976 scopus 로고    scopus 로고
    • Multifaceted roles of HSF1 in cancer
    • Jiang, S., et al. Multifaceted roles of HSF1 in cancer. Tumour Biol. 36, 4923-4931 (2015
    • (2015) Tumour Biol , vol.36 , pp. 4923-4931
    • Jiang, S.1
  • 2
    • 75749136948 scopus 로고    scopus 로고
    • Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease
    • Neef, D.W., Turski, M.L., & Thiele, D.J. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol. 8, e1000291 (2010
    • (2010) PLoS Biol , vol.8 , pp. e1000291
    • Neef, D.W.1    Turski, M.L.2    Thiele, D.J.3
  • 3
    • 77954955686 scopus 로고    scopus 로고
    • Heat shock factors: Integrators of cell stress, development and lifespan
    • Akerfelt, M., Morimoto, R.I., & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545-555 (2010
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 545-555
    • Akerfelt, M.1    Morimoto, R.I.2    Sistonen, L.3
  • 4
    • 84908689538 scopus 로고    scopus 로고
    • Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity
    • Jaeger, A.M., Makley, L.N., Gestwicki, J.E., & Thiele, D.J. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. J. Biol. Chem. 289, 30459-30469 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 30459-30469
    • Jaeger, A.M.1    Makley, L.N.2    Gestwicki, J.E.3    Thiele, D.J.4
  • 5
    • 84864585171 scopus 로고    scopus 로고
    • HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers
    • Mendillo, M.L., et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549-562 (2012
    • (2012) Cell , vol.150 , pp. 549-562
    • Mendillo, M.L.1
  • 6
    • 67649217159 scopus 로고    scopus 로고
    • Inhibiting the transcription factor HSF1 as an anticancer strategy
    • Whitesell, L., & Lindquist, S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets 13, 469-478 (2009
    • (2009) Expert Opin. Ther. Targets , vol.13 , pp. 469-478
    • Whitesell, L.1    Lindquist, S.2
  • 7
    • 82455210670 scopus 로고    scopus 로고
    • Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases
    • Neef, D.W., Jaeger, A.M., & Thiele, D.J. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat. Rev. Drug Discov. 10, 930-944 (2011
    • (2011) Nat. Rev. Drug Discov , vol.10 , pp. 930-944
    • Neef, D.W.1    Jaeger, A.M.2    Thiele, D.J.3
  • 8
    • 0032936785 scopus 로고    scopus 로고
    • A new use for the wing of the winged helix-turn-helix motif in the HSF-DNA cocrystal
    • Littlefield, O., & Nelson, H.C. A new use for the wing of the winged helix-turn-helix motif in the HSF-DNA cocrystal. Nat. Struct. Biol. 6, 464-470 (1999
    • (1999) Nat. Struct. Biol , vol.6 , pp. 464-470
    • Littlefield, O.1    Nelson, H.C.2
  • 9
    • 0027452754 scopus 로고
    • Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper
    • Rabindran, S.K., Haroun, R.I., Clos, J., Wisniewski, J., & Wu, C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259, 230-234 (1993
    • (1993) Science , vol.259 , pp. 230-234
    • Rabindran, S.K.1    Haroun, R.I.2    Clos, J.3    Wisniewski, J.4    Wu, C.5
  • 10
    • 0024852809 scopus 로고
    • Trimerization of a yeast transcriptional activator via a coiled-coil motif
    • Sorger, P.K., & Nelson, H.C. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59, 807-813 (1989
    • (1989) Cell , vol.59 , pp. 807-813
    • Sorger, P.K.1    Nelson, H.C.2
  • 11
    • 0031931412 scopus 로고    scopus 로고
    • Intramolecular repression of mouse heat shock factor 1
    • Farkas, T., Kutskova, Y.A., & Zimarino, V. Intramolecular repression of mouse heat shock factor 1. Mol. Cell. Biol. 18, 906-918 (1998
    • (1998) Mol. Cell. Biol , vol.18 , pp. 906-918
    • Farkas, T.1    Kutskova, Y.A.2    Zimarino, V.3
  • 12
    • 0028150986 scopus 로고
    • Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure
    • Zuo, J., Baler, R., Dahl, G., & Voellmy, R. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14, 7557-7568 (1994
    • (1994) Mol. Cell. Biol , vol.14 , pp. 7557-7568
    • Zuo, J.1    Baler, R.2    Dahl, G.3    Voellmy, R.4
  • 13
    • 84883321205 scopus 로고    scopus 로고
    • Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells
    • Vihervaara, A., et al. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Natl. Acad. Sci. USA. 110, E3388-E3397 (2013
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. E3388-E3397
    • Vihervaara, A.1
  • 14
    • 84859230739 scopus 로고    scopus 로고
    • Accurate prediction of inducible transcription factor binding intensities in vivo
    • Guertin, M.J., Martins, A.L., Siepel, A., & Lis, J.T. Accurate prediction of inducible transcription factor binding intensities in vivo. PLoS Genet. 8, e1002610 (2012
    • (2012) PLoS Genet , vol.8 , pp. e1002610
    • Guertin, M.J.1    Martins, A.L.2    Siepel, A.3    Lis, J.T.4
  • 15
    • 84919761983 scopus 로고    scopus 로고
    • A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1
    • Neef, D.W., et al. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Reports 9, 955-966 (2014
    • (2014) Cell Reports , vol.9 , pp. 955-966
    • Neef, D.W.1
  • 16
    • 33644843117 scopus 로고    scopus 로고
    • A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor
    • Hahn, J.-S., Neef, D.W., & Thiele, D.J. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol. Microbiol. 60, 240-251 (2006
    • (2006) Mol. Microbiol , vol.60 , pp. 240-251
    • Hahn, J.-S.1    Neef, D.W.2    Thiele, D.J.3
  • 17
    • 84905369461 scopus 로고    scopus 로고
    • The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy
    • Scherz-Shouval, R., et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158, 564-578 (2014
    • (2014) Cell , vol.158 , pp. 564-578
    • Scherz-Shouval, R.1
  • 18
    • 84880757782 scopus 로고    scopus 로고
    • Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1
    • Riva, L., et al. Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J. Huntingtons Dis. 1, 33-45 (2012
    • (2012) J. Huntingtons Dis , vol.1 , pp. 33-45
    • Riva, L.1
  • 19
    • 80053359794 scopus 로고    scopus 로고
    • Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation
    • Shinkawa, T., et al. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol. Biol. Cell 22, 3571-3583 (2011
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3571-3583
    • Shinkawa, T.1
  • 20
    • 84907076634 scopus 로고    scopus 로고
    • Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival
    • Elsing, A.N., et al. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. J. Cell Biol. 206, 735-749 (2014
    • (2014) J. Cell Biol , vol.206 , pp. 735-749
    • Elsing, A.N.1
  • 21
    • 79953699778 scopus 로고    scopus 로고
    • Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress
    • Ahlskog, J.K., et al. Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress. Mol. Cell. Biol. 30, 5608-5620 (2010
    • (2010) Mol. Cell. Biol , vol.30 , pp. 5608-5620
    • Ahlskog, J.K.1
  • 22
    • 84905404620 scopus 로고    scopus 로고
    • Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome
    • El Fatimy, R., et al. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol. Med. 6, 1043-1061 (2014
    • (2014) EMBO Mol. Med , vol.6 , pp. 1043-1061
    • El Fatimy, R.1
  • 23
    • 84874774572 scopus 로고    scopus 로고
    • A dominant-negative mutation of HSF2 associated with idiopathic azoospermia
    • Mou, L., et al. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum. Genet. 132, 159-165 (2013
    • (2013) Hum. Genet , vol.132 , pp. 159-165
    • Mou, L.1
  • 24
    • 49649119465 scopus 로고    scopus 로고
    • Promoter ChIP-chip analysis in mouse testis reveals y chromosome occupancy by HSF2
    • Akerfelt, M., et al. Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc. Natl. Acad. Sci. USA. 105, 11224-11229 (2008
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 11224-11229
    • Akerfelt, M.1
  • 25
    • 48749116280 scopus 로고    scopus 로고
    • Interaction of HSF1 and HSF2 with the Hspa1b promoter in mouse epididymal spermatozoa
    • Wilkerson, D.C., Murphy, L.A., & Sarge, K.D. Interaction of HSF1 and HSF2 with the Hspa1b promoter in mouse epididymal spermatozoa. Biol. Reprod. 79, 283-288 (2008
    • (2008) Biol. Reprod , vol.79 , pp. 283-288
    • Wilkerson, D.C.1    Murphy, L.A.2    Sarge, K.D.3
  • 26
    • 84899754421 scopus 로고    scopus 로고
    • The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: Role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes
    • Rossi, A., et al. The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J. Biol. Chem. 289, 12705-12715 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 12705-12715
    • Rossi, A.1
  • 27
    • 63149154055 scopus 로고    scopus 로고
    • Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli
    • Sandqvist, A., et al. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol. Biol. Cell 20, 1340-1347 (2009
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1340-1347
    • Sandqvist, A.1
  • 28
    • 84941076765 scopus 로고    scopus 로고
    • Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains
    • Liu, J., et al. Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains. Nucleic Acids Res. 43, 1231-1240 (2015
    • (2015) Nucleic Acids Res , vol.43 , pp. 1231-1240
    • Liu, J.1
  • 29
    • 75849122854 scopus 로고    scopus 로고
    • Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN
    • Kitano, K., Kim, S.Y., & Hakoshima, T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18, 177-187 (2010
    • (2010) Structure , vol.18 , pp. 177-187
    • Kitano, K.1    Kim, S.Y.2    Hakoshima, T.3
  • 30
    • 84899759007 scopus 로고    scopus 로고
    • Proteome-wide identification of SUMO2 modification sites
    • Tammsalu, T., et al. Proteome-wide identification of SUMO2 modification sites. Sci. Signal. 7, rs2 (2014
    • (2014) Sci. Signal , vol.7 , pp. rs2
    • Tammsalu, T.1
  • 31
    • 84925775745 scopus 로고    scopus 로고
    • Uncovering global SUMOylation signaling networks in a site-specific manner
    • Hendriks, I.A., et al. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21, 927-936 (2014
    • (2014) Nat. Struct. Mol. Biol , vol.21 , pp. 927-936
    • Hendriks, I.A.1
  • 32
    • 84876164814 scopus 로고    scopus 로고
    • Detecting endogenous SUMO targets in mammalian cells and tissues
    • Becker, J., et al. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol. 20, 525-531 (2013
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 525-531
    • Becker, J.1
  • 33
    • 84868088016 scopus 로고    scopus 로고
    • RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT
    • Fujimoto, M., et al. RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol. Cell 48, 182-194 (2012
    • (2012) Mol. Cell , vol.48 , pp. 182-194
    • Fujimoto, M.1
  • 34
    • 79959463520 scopus 로고    scopus 로고
    • Regulation of HSF1 function in the heat stress response: Implications in aging and disease
    • Anckar, J., & Sistonen, L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089-1115 (2011
    • (2011) Annu. Rev. Biochem , vol.80 , pp. 1089-1115
    • Anckar, J.1    Sistonen, L.2
  • 35
    • 0027159173 scopus 로고
    • Activation of Drosophila heat shock factor: Conformational change associated with a monomer-to-trimer transition
    • Westwood, J.T., & Wu, C. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol. 13, 3481-3486 (1993
    • (1993) Mol. Cell. Biol , vol.13 , pp. 3481-3486
    • Westwood, J.T.1    Wu, C.2
  • 36
    • 0030728446 scopus 로고    scopus 로고
    • Conservation of a stress response: Human heat shock transcription factors functionally substitute for yeast HSF
    • Liu, X.D., Liu, P.C., Santoro, N., & Thiele, D.J. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J. 16, 6466-6477 (1997
    • (1997) EMBO J. , vol.16 , pp. 6466-6477
    • Liu, X.D.1    Liu, P.C.2    Santoro, N.3    Thiele, D.J.4
  • 37
    • 0028314945 scopus 로고
    • Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription
    • Sistonen, L., Sarge, K.D., & Morimoto, R.I. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14, 2087-2099 (1994
    • (1994) Mol. Cell. Biol , vol.14 , pp. 2087-2099
    • Sistonen, L.1    Sarge, K.D.2    Morimoto, R.I.3
  • 38
    • 77957252262 scopus 로고    scopus 로고
    • The heat shock factor family and adaptation to proteotoxic stress
    • Fujimoto, M., & Nakai, A. The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 277, 4112-4125 (2010
    • (2010) FEBS J. , vol.277 , pp. 4112-4125
    • Fujimoto, M.1    Nakai, A.2
  • 39
    • 70349507340 scopus 로고    scopus 로고
    • The shock of aging: Molecular chaperones and the heat shock response in longevity and aging: A mini-review
    • Calderwood, S.K., Murshid, A., & Prince, T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging: a mini-review. Gerontology 55, 550-558 (2009
    • (2009) Gerontology , vol.55 , pp. 550-558
    • Calderwood, S.K.1    Murshid, A.2    Prince, T.3
  • 40
    • 0032485391 scopus 로고    scopus 로고
    • Structure of the DNA-binding domains from NFAT Fos and Jun bound specifically to DNA
    • Chen, L., Glover, J.N., Hogan, P.G., Rao, A., & Harrison, S.C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42-48 (1998
    • (1998) Nature , vol.392 , pp. 42-48
    • Chen, L.1    Glover, J.N.2    Hogan, P.G.3    Rao, A.4    Harrison, S.C.5
  • 41
    • 84924560308 scopus 로고    scopus 로고
    • Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity
    • Tan, K., et al. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat. Commun. 6, 6580 (2015
    • (2015) Nat. Commun , vol.6 , pp. 6580
    • Tan, K.1
  • 42
    • 84924171831 scopus 로고    scopus 로고
    • Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1
    • Zelin, E., & Freeman, B.C. Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1. J. Mol. Biol. 427, 1644-1654 (2015
    • (2015) J. Mol. Biol , vol.427 , pp. 1644-1654
    • Zelin, E.1    Freeman, B.C.2
  • 43
    • 63449114950 scopus 로고    scopus 로고
    • Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects
    • Kalmar, B., & Greensmith, L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell. Mol. Biol. Lett. 14, 319-335 (2009
    • (2009) Cell. Mol. Biol. Lett , vol.14 , pp. 319-335
    • Kalmar, B.1    Greensmith, L.2
  • 44
    • 77954257799 scopus 로고    scopus 로고
    • ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids
    • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529-W533 (2010
    • (2010) Nucleic Acids Res , vol.38 , pp. W529-W533
    • Ashkenazy, H.1    Erez, E.2    Martz, E.3    Pupko, T.4    Ben-Tal, N.5
  • 45
    • 0036177128 scopus 로고    scopus 로고
    • Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1
    • Bernier-Villamor, V., Sampson, D.A., Matunis, M.J., & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356 (2002
    • (2002) Cell , vol.108 , pp. 345-356
    • Bernier-Villamor, V.1    Sampson, D.A.2    Matunis, M.J.3    Lima, C.D.4
  • 46
    • 31344444419 scopus 로고    scopus 로고
    • Inhibition of DNA binding by differential sumoylation of heat shock factors
    • Anckar, J., et al. Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol. Cell. Biol. 26, 955-964 (2006
    • (2006) Mol. Cell. Biol , vol.26 , pp. 955-964
    • Anckar, J.1
  • 47
    • 59049086727 scopus 로고    scopus 로고
    • Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2
    • Tateishi, Y., et al. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J. Biol. Chem. 284, 2435-2447 (2009
    • (2009) J. Biol. Chem , vol.284 , pp. 2435-2447
    • Tateishi, Y.1
  • 48
    • 84938749969 scopus 로고    scopus 로고
    • Global SUMOylation on active chromatin is an acute heat stress response restricting transcription
    • Niskanen, E.A., et al. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol. 16, 153 (2015
    • (2015) Genome Biol , vol.16 , pp. 153
    • Niskanen, E.A.1
  • 49
    • 84936875256 scopus 로고    scopus 로고
    • Proteotoxic stress reprograms the chromatin landscape of SUMO modification
    • rs7
    • Seifert, A., Schofield, P., Barton, G.J., & Hay, R.T. Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci. Signal. 8, rs7 (2015
    • (2015) Sci. Signal , vol.8
    • Seifert, A.1    Schofield, P.2    Barton, G.J.3    Hay, R.T.4
  • 50
    • 0034674154 scopus 로고    scopus 로고
    • Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 A resolution
    • Shu, W., Liu, J., Ji, H., & Lu, M. Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 A resolution. J. Mol. Biol. 299, 1101-1112 (2000
    • (2000) J. Mol. Biol , vol.299 , pp. 1101-1112
    • Shu, W.1    Liu, J.2    Ji, H.3    Lu, M.4
  • 51
    • 84937509257 scopus 로고    scopus 로고
    • Intersecting transcription networks constrain gene regulatory evolution
    • Sorrells, T.R., Booth, L.N., Tuch, B.B., & Johnson, A.D. Intersecting transcription networks constrain gene regulatory evolution. Nature 523, 361-365 (2015
    • (2015) Nature , vol.523 , pp. 361-365
    • Sorrells, T.R.1    Booth, L.N.2    Tuch, B.B.3    Johnson, A.D.4
  • 52
    • 75549087305 scopus 로고    scopus 로고
    • The evolution of gene duplications: Classifying and distinguishing between models
    • Innan, H., & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97-108 (2010
    • (2010) Nat. Rev. Genet , vol.11 , pp. 97-108
    • Innan, H.1    Kondrashov, F.2
  • 53
    • 0032893932 scopus 로고    scopus 로고
    • Preservation of duplicate genes by complementary, degenerative mutations
    • Force, A., et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531-1545 (1999
    • (1999) Genetics , vol.151 , pp. 1531-1545
    • Force, A.1
  • 54
    • 84885647005 scopus 로고    scopus 로고
    • Following gene duplication, paralog interference constrains transcriptional circuit evolution
    • Baker, C.R., Hanson-Smith, V., & Johnson, A.D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342, 104-108 (2013
    • (2013) Science , vol.342 , pp. 104-108
    • Baker, C.R.1    Hanson-Smith, V.2    Johnson, A.D.3
  • 55
    • 84933545153 scopus 로고    scopus 로고
    • Heat-shock factor 2 is a suppressor of prostate cancer invasion
    • 29 June
    • Bjärk, J.K., et al. Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene doi:10.1038/onc.2015.241 29 June (2015
    • (2015) Oncogene
    • Bjärk, J.K.1
  • 56
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski, Z., & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 57
    • 0014432781 scopus 로고
    • Solvent content of protein crystals
    • Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497 (1968
    • (1968) J. Mol. Biol , vol.33 , pp. 491-497
    • Matthews, B.W.1
  • 58
    • 37349103121 scopus 로고    scopus 로고
    • Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard
    • Terwilliger, T.C., et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61-69 (2008
    • (2008) Acta Crystallogr. D Biol. Crystallogr , vol.64 , pp. 61-69
    • Terwilliger, T.C.1
  • 60
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P.D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221 (2010
    • (2010) Acta Crystallogr. D Biol. Crystallogr , vol.66 , pp. 213-221
    • Adams, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.