메뉴 건너뛰기




Volumn , Issue , 2005, Pages 37-87

An overview of nonlinear identification and control with neural networks

Author keywords

Evolutionary computation; Input model order; Iterative process; Multiobjective evolutionary algorithms; Neural model design; Neural network modelling; Neurocontrol approach; Neurocontrollers; Nonlinear control systems; Nonlinear systems identification; Parameter estimation; Structure selection

Indexed keywords

DATA ACQUISITION; EVOLUTIONARY ALGORITHMS; IDENTIFICATION (CONTROL SYSTEMS); ITERATIVE METHODS; NONLINEAR ANALYSIS; NONLINEAR CONTROL SYSTEMS; NONLINEAR SYSTEMS;

EID: 79955716384     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1049/PBCE070E_ch2     Document Type: Chapter
Times cited : (34)

References (130)
  • 7
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • FUNAHASHI, K.: ‘On the approximate realization of continuous mappings by neural networks’, Neural Networks, 1989, 2, pp. 183-92
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • HORNIK, K., STINCHCOMBE, M., and WHITE, H.: ‘Multilayer feedforward networks are universal approximators’, Neural Networks, 1989, 2, pp. 359-66
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • BROOMHEAD, D., and LOWE, D.: ‘Multivariable functional interpolation and adaptive networks’, Complex Systems, 1988, 2, pp. 321-55
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 10
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • GIROSI, F., and POGGIO, T.: ‘Networks and the best approximation property’, Biological Cybernetics, 1990, 63, pp. 169-76
    • (1990) Biological Cybernetics , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 13
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • JACOBS, R.: ‘Increased rates of convergence through learning rate adaptation’, Neural Networks, 1988, 1, pp. 295-307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.1
  • 14
    • 0025403609 scopus 로고
    • Improvement of the backpropagation algorithm for training neural networks
    • LEONARD, J., and KRAMER, M. A.: ‘Improvement of the backpropagation algorithm for training neural networks’, Computers and Chemical Engineering, 1990, 14 (3), pp. 337-41
    • (1990) Computers and Chemical Engineering , vol.14 , Issue.3 , pp. 337-341
    • Leonard, J.1    Kramer, M.A.2
  • 16
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • LEVENBERG, K.: ‘A method for the solution of certain problems in least squares’, Quarterly Applied Mathematics, 1944, 2, pp. 164-8
    • (1944) Quarterly Applied Mathematics , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 17
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • MARQUARDT, D.: ‘An algorithm for least-squares estimation of nonlinear parameters’, SIAM Journal of Applied Mathematics, 1963, 11, pp. 431-41
    • (1963) SIAM Journal of Applied Mathematics , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 20
    • 0037142695 scopus 로고    scopus 로고
    • Supervised training algorithms for B-spline neural networks and neuro-fuzzy systems
    • RUANO, A. E., CABRITA, C., OLIVEIRA, J. V., and KÓCZY, L. T.:‘Supervised training algorithms for B-spline neural networks and neuro-fuzzy systems’, International Journal of Systems Science, 2002, 33 (8), pp. 689-711
    • (2002) International Journal of Systems Science , vol.33 , Issue.8 , pp. 689-711
    • Ruano, A.E.1    Cabrita, C.2    Oliveira, J.V.3    Kóczy, L.T.4
  • 23
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • YAO, X.: ‘Evolving artificial neural networks’, Proceedings of the IEEE, 1999, 87 (9), pp. 1423-47
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 24
    • 0000783575 scopus 로고
    • The upstar algorithm: A method for constructing and training feedforward neural networks
    • FREAN, M.: ‘The upstar algorithm: a method for constructing and training feedforward neural networks’, Neural Computation, 1990, 2 (2), pp. 198-209
    • (1990) Neural Computation , vol.2 , Issue.2 , pp. 198-209
    • Frean, M.1
  • 25
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks:Perceptron, madaline and backpropagation
    • WIDROW, B., and LEHR, M. A.: '30 years of adaptive neural networks:perceptron, madaline and backpropagation’, Proceedings of the IEEE, 1990, 78 (9), pp. 1415-42
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 26
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • MOODY, J., and DARKEN, C. J.: ‘Fast learning in networks of locally-tuned processing units’, Neural Computation, 1989, 1, pp. 281-94
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 28
    • 0029196051 scopus 로고
    • Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
    • CHINRUNGRUENG, C., and SQUIN, C. H.: ‘Optimal adaptive k-means algorithm with dynamic adjustment of learning rate’, IEEE Transactions on Neural Networks, 1995, 6 (1), pp. 157-69
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.1 , pp. 157-169
    • Chinrungrueng, C.1    Squin, C.H.2
  • 32
    • 33846451627 scopus 로고
    • A learning method for system identification
    • NAGUNO, J. I., and NODA, A.: ‘A learning method for system identification’, IEEE Transactions on Automatic Control, 1967, 12 (3), pp. 282-8
    • (1967) IEEE Transactions on Automatic Control , vol.12 , Issue.3 , pp. 282-288
    • Naguno, J.I.1    Noda, A.2
  • 33
    • 0026925086 scopus 로고
    • A comparison of five algorithms for the training of CMAC memories for learning control systems
    • PARKS, P. C., and MILITZER, J.: ‘A comparison of five algorithms for the training of CMAC memories for learning control systems’, Automatica, 1992, 28 (5), pp. 1027-35
    • (1992) Automatica , vol.28 , Issue.5 , pp. 1027-1035
    • Parks, P.C.1    Militzer, J.2
  • 35
    • 0032679273 scopus 로고    scopus 로고
    • A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction
    • YEE, P., and HAYKIN, S.: ‘A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction’, IEEE Transactions on Signal Processing, 1999, 47 (9), pp. 2503-21
    • (1999) IEEE Transactions on Signal Processing , vol.47 , Issue.9 , pp. 2503-2521
    • Yee, P.1    Haykin, S.2
  • 36
    • 84996565038 scopus 로고
    • Learning rate schedules for faster stochastic gradient search
    • KUNG, S. Y., FALLSIDE, F., SØRENSEN, J. A., andKRAMM, C. A. (Eds), IEEE Press, Piscataway, NJ
    • DARKEN, C., CHANG, J., and MOODY, J.: ‘Learning rate schedules for faster stochastic gradient search’, in KUNG, S. Y., FALLSIDE, F., SØRENSEN, J. A., andKRAMM, C. A. (Eds): ‘Neural networks for signal processing, vol. 2’ (IEEE Press, Piscataway, NJ, 1992) pp. 3-13
    • (1992) Neural networks for signal processing, vol. 2 , pp. 3-13
    • Darken, C.1    Chang, J.2    Moody, J.3
  • 37
    • 0001031887 scopus 로고
    • An adaptive training algorithm for backpropagation networks
    • CHAN, L. W., and FALLSIDE, F.: ‘An adaptive training algorithm for backpropagation networks’, Computer Speech and Language, 1987, 2, pp. 205-18
    • (1987) Computer Speech and Language , vol.2 , pp. 205-218
    • Chan, L.W.1    Fallside, F.2
  • 38
    • 0001209372 scopus 로고
    • Accelerated backpropagation learning: Two optimization methods
    • BATITI, R.: ‘Accelerated backpropagation learning: two optimization methods’, Complex Systems, 1989, 3, pp. 331-42
    • (1989) Complex Systems , vol.3 , pp. 331-342
    • Batiti, R.1
  • 39
    • 0024613194 scopus 로고
    • Recursive prediction error parameter estimator for non-linear models
    • CHEN, S., and BILLINGS, S. A.: ‘Recursive prediction error parameter estimator for non-linear models’, International Journal of Control, 1989, 49 (2), pp. 569-94
    • (1989) International Journal of Control , vol.49 , Issue.2 , pp. 569-594
    • Chen, S.1    Billings, S.A.2
  • 40
    • 0033716744 scopus 로고    scopus 로고
    • Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm
    • NGIA, L. S. H., and SJÖBERG, J.: ‘Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm’, IEEE Transactions on Signal Processing, 2000, 48 (7), pp. 1915-26
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.7 , pp. 1915-1926
    • Ngia, L.S.H.1    Sjöberg, J.2
  • 41
    • 0025449162 scopus 로고
    • Parallel recursive prediction error algorithm for training layered networks
    • CHEN, S., COWAN, C. F. N., BILLINGS, S. A., and GRANT, P. M.: ‘Parallel recursive prediction error algorithm for training layered networks’, International Journal of Control, 1990, 51 (6), pp. 1215-28
    • (1990) International Journal of Control , vol.51 , Issue.6 , pp. 1215-1228
    • Chen, S.1    Cowan, C.F.N.2    Billings, S.A.3    Grant, P.M.4
  • 42
    • 0001382203 scopus 로고
    • Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms
    • NERRAND, O., ROUSSEL-RAGOT, P., PERSONNAZ, L., DREFYS, G., and MARCOS, S.: ‘Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms’, Neural Computation, 1993, 5 (2), pp. 165-99
    • (1993) Neural Computation , vol.5 , Issue.2 , pp. 165-199
    • Nerrand, O.1    Roussel-Ragot, P.2    Personnaz, L.3    Drefys, G.4    Marcos, S.5
  • 43
    • 0036138323 scopus 로고    scopus 로고
    • Neural network models in greenhouse air temperature prediction
    • FERREIRA, P. M., FARIA, E. A., and RUANO, A. E.: ‘Neural network models in greenhouse air temperature prediction’, Neurocomputing, 2002, 43 (1), pp. 51-75
    • (2002) Neurocomputing , vol.43 , Issue.1 , pp. 51-75
    • Ferreira, P.M.1    Faria, E.A.2    Ruano, A.E.3
  • 44
    • 0025464263 scopus 로고
    • Structure identification of nonlinear dynamic systems: A survey on input/output approaches
    • HABER, R., and UNBEHAUEN, H.: ‘Structure identification of nonlinear dynamic systems: a survey on input/output approaches’, Automatica, 1990, 26 (4), pp. 651-77
    • (1990) Automatica , vol.26 , Issue.4 , pp. 651-677
    • Haber, R.1    Unbehauen, H.2
  • 46
    • 0031701082 scopus 로고    scopus 로고
    • Multiobjective optimization and multiple constraint handling with evolutionary algorithms - part I: A unified formulation
    • FONSECA, C. M., and FLEMING, P. J.: ‘Multiobjective optimization and multiple constraint handling with evolutionary algorithms - part I: a unified formulation’, IEEE Transactions on Systems, Man, and Cybernetics - Part A, 1998, 28 (1), pp. 26-37
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics - Part A , vol.28 , Issue.1 , pp. 26-37
    • Fonseca, C.M.1    Fleming, P.J.2
  • 47
    • 0031698375 scopus 로고    scopus 로고
    • Multiobjective optimization and multiple constraint handling with evolutionary algorithms - part II: Application example
    • FONSECA, C. M., and FLEMING, P. J.: ‘Multiobjective optimization and multiple constraint handling with evolutionary algorithms - part II: application example’, IEEE Transactions on Systems, Man, and Cybernetics - Part A, 1998, 28 (1), pp. 38-47
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics - Part A , vol.28 , Issue.1 , pp. 38-47
    • Fonseca, C.M.1    Fleming, P.J.2
  • 50
    • 0042214972 scopus 로고
    • Combining explanatory projection pursuit and project pursuit regression with application to neural networks
    • INTRATOR, N.: ‘Combining explanatory projection pursuit and project pursuit regression with application to neural networks’, Neural Computation, 1993, 5 (3), pp. 443-57
    • (1993) Neural Computation , vol.5 , Issue.3 , pp. 443-457
    • Intrator, N.1
  • 51
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • TOURETZKY, D. S. (Ed.), Morgan Kaufman, San Francisco, CA, USA
    • FAHLMAN, S. E., and LEBIERE, C.: ‘The cascade-correlation learning architecture’, in TOURETZKY, D. S. (Ed.): ‘Advances in neural information processing systems, vol. 2’ (Morgan Kaufman, San Francisco, CA, USA, 1990), pp. 524-32
    • (1990) Advances in neural information processing systems, vol. 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 52
    • 0027662338 scopus 로고
    • Pruning algorithms: A survey
    • REED, R.: ‘Pruning algorithms: a survey’, IEEE Transactions on Neural Networks, 1993, 4 (5), pp. 740-7
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 53
    • 0000539096 scopus 로고
    • Generalization by weight-elimination with application to forecasting
    • LIPPMANN, R., MOODY, J., and TOURETZKY, D. et al. (Eds), Morgan Kaufman, San Mateo, CA
    • WEIGEND, A. S., RUMELHART, D. E., and HUBERMAN, B. A.: ‘Generalization by weight-elimination with application to forecasting’, in LIPPMANN, R., MOODY, J., and TOURETZKY, D. et al. (Eds): ‘Advances in natural information processing, vol. 3’ (Morgan Kaufman, San Mateo, CA, 1991), pp. 875-82
    • (1991) Advances in natural information processing, vol. 3 , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 57
    • 0026116468 scopus 로고
    • Orthogonal least-squares learning algorithm for radial basis function networks
    • CHEN, S., COWAN, C. F. N., and GRANT, P. M.: ‘Orthogonal least-squares learning algorithm for radial basis function networks’, IEEE Transactions on Neural Networks, 1991, 2 (2), pp. 302-9
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 58
    • 0024771664 scopus 로고
    • Orthogonal least-squares and their application to nonlinear system identification
    • CHEN, S., BILLINGS, S. A., and LUO, W.: ‘Orthogonal least-squares and their application to nonlinear system identification’, International Journal of Control, 1989, 50 (5), pp. 1873-96
    • (1989) International Journal of Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 59
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • ORR, M. J. L.: ‘Regularization in the selection of radial basis function centers’, Neural Computation, 1995, 7 (3), pp. 606-23
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.J.L.1
  • 60
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • PLATT, J.: ‘A resource allocating network for function interpolation’, Neural Computation, 1991, 3, pp. 213-25
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 61
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • KADIRKAMANATHAN, V., and NIRANJAN, M.: ‘A function estimation approach to sequential learning with neural networks’, Neural Computation, 1993, 5, pp. 954-75
    • (1993) Neural Computation , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 62
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • YINGWEI, L., SUNDARARAJAN, N., and SARATCHANDRAN, P.:‘A sequential learning scheme for function approximation using minimal radial basis function neural networks’, Neural Computation, 1997, 9, pp. 461-78
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 63
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • YINGWEI, L., SUNDARARAJAN, N., and SARATCHANDRAN, P.: ‘Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm’, IEEE Transactions on Neural Networks, 1998, 9 (2), pp. 308-18
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 64
    • 84947630316 scopus 로고
    • ASMOD. An algorithm for adaptive spline modelling of observation data
    • KAVLI, T.: ‘ASMOD. An algorithm for adaptive spline modelling of observation data’, International Journal of Control, 1993, 58 (4), pp. 947-67
    • (1993) International Journal of Control , vol.58 , Issue.4 , pp. 947-967
    • Kavli, T.1
  • 65
    • 0344543445 scopus 로고    scopus 로고
    • Single and multiobjective genetic programming design for B-spline neural networks and neuro-fuzzy systems
    • Valência, Spain
    • CABRITA, C., RUANO, A. E., and FONSECA, C. M.: ‘Single and multiobjective genetic programming design for B-spline neural networks and neuro-fuzzy systems’. Proceedings of IFACworkshop on Advanced fuzzy/neural control, Valência, Spain, 2001, pp. 93-8
    • (2001) Proceedings of IFACworkshop on Advanced fuzzy/neural control , pp. 93-98
    • Cabrita, C.1    Ruano, A.E.2    Fonseca, C.M.3
  • 68
    • 0029483769 scopus 로고
    • Nonlinear black-box modelling in system identification. A unified overview
    • SJOBERG, J., ZHANG, Q., LJUNG, L. et al.: ‘Nonlinear black-box modelling in system identification. A unified overview’, Automatica, 1995, 31 (12), pp. 1691-724
    • (1995) Automatica , vol.31 , Issue.12 , pp. 1691-1724
    • Sjoberg, J.1    Zhang, Q.2    Ljung, L.3
  • 69
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • WILLIAMS, R. J., and ZIPSER, D.: ‘A learning algorithm for continually running fully recurrent neural networks’, Neural Computation, 1989, 1 (2), pp. 270-80
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 70
    • 26444565569 scopus 로고
    • Finding structure in time
    • ELMAN, L. J.: ‘Finding structure in time’, Cognitive Science, 1990, 14, pp. 179-211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, L.J.1
  • 73
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks:A critical review of architectures
    • TSOI, A., and BACK, A. D.: ‘Locally recurrent globally feedforward networks:a critical review of architectures’, IEEE Transactions on Neural Networks, 1994, 5 (2), pp. 229-39
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.1    Back, A.D.2
  • 74
    • 0025464263 scopus 로고
    • Structure identification of nonlinear dynamical systems: A survey on input/output methods
    • HABER, R., and UNBEHAUEN, H.: ‘Structure identification of nonlinear dynamical systems: a survey on input/output methods’, Automatica, 1985, 26 (4), pp. 651-77
    • (1985) Automatica , vol.26 , Issue.4 , pp. 651-677
    • Haber, R.1    Unbehauen, H.2
  • 76
    • 0025220903 scopus 로고
    • On covariance function tests used in system identification
    • SÖDERSTRÖM, T., and STOICA, P.: ‘On covariance function tests used in system identification’, Automatica, 1990, 26 (1), pp. 834-49
    • (1990) Automatica , vol.26 , Issue.1 , pp. 834-849
    • Söderström, T.1    Stoica, P.2
  • 77
    • 0022752513 scopus 로고
    • Correlation based validity tests for nonlinear models
    • BILLINGS, S., and VOON, W. S. F.: ‘Correlation based validity tests for nonlinear models’, International Journal of Control, 1986, 44 (1), pp. 235-44
    • (1986) International Journal of Control , vol.44 , Issue.1 , pp. 235-244
    • Billings, S.1    Voon, W.S.F.2
  • 78
    • 0001658853 scopus 로고
    • Nonlinear model validation using correlation tests
    • BILLINGS, S. A., and ZHU, Q. M.: ‘Nonlinear model validation using correlation tests’, International Journal of Control, 1994, 60 (6), pp. 1107-20
    • (1994) International Journal of Control , vol.60 , Issue.6 , pp. 1107-1120
    • Billings, S.A.1    Zhu, Q.M.2
  • 79
    • 0026954775 scopus 로고
    • Neural networks for control system - a survey
    • HUNT, K. J., SBARBARO, D., ZBIKOWSKI, R., and GAWTHROP, P. J.:‘Neural networks for control system - a survey’, Automatica, 1992, 28 (6), pp. 1083-112
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 80
    • 0031139313 scopus 로고    scopus 로고
    • Nonlinear control structures based on embedded neural system models
    • LIGHTBODY, G., and IRWIN, G. W.: ‘Nonlinear control structures based on embedded neural system models’, IEEE Transactions on Neural Networks, 1997, 8 (3), pp. 553-67
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 553-567
    • Lightbody, G.1    Irwin, G.W.2
  • 81
    • 0035427391 scopus 로고    scopus 로고
    • Special issue on neural network feedback control
    • NARENDRA, K. S., and LEWIS, F. L. (Eds): ‘Special issue on neural network feedback control’, Automatica, 2001, 37 (8), 1147-301
    • (2001) Automatica , vol.37 , Issue.8 , pp. 1147-1301
    • Narendra, K.S.1    Lewis, F.L.2
  • 83
    • 0007724997 scopus 로고    scopus 로고
    • A neural gain scheduling network controller for nonholonomic systems
    • JENG, J. T., and LEE, T. T.: ‘A neural gain scheduling network controller for nonholonomic systems’, IEEE Transactions on Systems, Man and Cybernetics -Part A, 1999, 29 (6), pp. 654-61
    • (1999) IEEE Transactions on Systems, Man and Cybernetics -Part A , vol.29 , Issue.6 , pp. 654-661
    • Jeng, J.T.1    Lee, T.T.2
  • 84
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • NARENDRA, K. S., and PARTHASARATHY, K.: ‘Identification and control of dynamical systems using neural networks’, IEEE Transactions on Neural Networks, 1990, 1 (1), pp. 4-27
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 85
    • 0032686345 scopus 로고    scopus 로고
    • Identification of plant inverse dynamics using neural networks
    • PHAM, D. T., and OH, S. J.: ‘Identification of plant inverse dynamics using neural networks’, Artificial Intelligence in Engineering, 1999, 13 (3), pp. 309-20
    • (1999) Artificial Intelligence in Engineering , vol.13 , Issue.3 , pp. 309-320
    • Pham, D.T.1    Oh, S.J.2
  • 86
    • 0033340953 scopus 로고    scopus 로고
    • Issues in the application of neural networks for tracking based on inverse control
    • CABRERA, J. B. D., and NARENDRA, K. S.: ‘Issues in the application of neural networks for tracking based on inverse control’, IEEE Transactions on Automatic Control, 1999, 44 (11), pp. 2007-27
    • (1999) IEEE Transactions on Automatic Control , vol.44 , Issue.11 , pp. 2007-2027
    • Cabrera, J.B.D.1    Narendra, K.S.2
  • 87
    • 0037358447 scopus 로고    scopus 로고
    • Adaptive inverse control of linear and nonlinear systems using dynamic neural networks
    • PLETT, G. L.: ‘Adaptive inverse control of linear and nonlinear systems using dynamic neural networks’, IEEE Transactions on Neural Networks, 2003, 14 (2), pp. 360-76
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.2 , pp. 360-376
    • Plett, G.L.1
  • 89
  • 91
    • 0035916802 scopus 로고    scopus 로고
    • Dynamic prediction and control of heat exchangers using artificial neural networks
    • DIAZ, G., SEN, M., YANG, K. T., and McCLAIN, R. L.: ‘Dynamic prediction and control of heat exchangers using artificial neural networks’, International Journal of Heat and Mass Transfer, 2001, 44 (9), pp. 1671-9
    • (2001) International Journal of Heat and Mass Transfer , vol.44 , Issue.9 , pp. 1671-1679
    • Diaz, G.1    Sen, M.2    Yang, K.T.3    McClain, R.L.4
  • 92
    • 0033640645 scopus 로고    scopus 로고
    • Nonlinear internal model control using neural networks; application to processes with delay and design issues
    • RIVALS, I., and PERSONNAZ, L.: ‘Nonlinear internal model control using neural networks; application to processes with delay and design issues’, IEEE Transactions on Neural Networks, 2000, 11 (1), pp. 80-90
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 80-90
    • Rivals, I.1    Personnaz, L.2
  • 99
    • 0029713462 scopus 로고    scopus 로고
    • Dynamic neural networks in nonlinear predictive control (an industrial application)
    • TURNER, P., MONTAGUE, G., and MORRIS, J.: ‘Dynamic neural networks in nonlinear predictive control (an industrial application)’, Computers and Chemical Engineering, 1996, 20, pp. 937-42
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 937-942
    • Turner, P.1    Montague, G.2    Morris, J.3
  • 100
    • 0242327185 scopus 로고    scopus 로고
    • Mechatronic combustion engines - from modeling to control
    • ISERMANN, R., and HAFNER, M.: ‘Mechatronic combustion engines - from modeling to control’, European Journal of Control, 2001, 7 (2-3), pp. 220-47
    • (2001) European Journal of Control , vol.7 , Issue.2-3 , pp. 220-247
    • Isermann, R.1    Hafner, M.2
  • 101
    • 0038686627 scopus 로고    scopus 로고
    • Nonlinear model-based predictive control with local linear neuro-fuzzy
    • FINK, A., TOPFER, S., and ISERMANN, R.: ‘Nonlinear model-based predictive control with local linear neuro-fuzzy’, Archive of Applied Mechanics, 2003, 72 (11-12), pp. 911-22
    • (2003) Archive of Applied Mechanics , vol.72 , Issue.11-12 , pp. 911-922
    • Fink, A.1    Topfer, S.2    Isermann, R.3
  • 106
    • 0026954302 scopus 로고
    • Gaussian networks for direct adaptive control
    • SANNER, M., and SLOTINE, J.: ‘Gaussian networks for direct adaptive control’, IEEE Transactions on Neural Networks, 1992, 3 (6), pp. 55-62
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 55-62
    • Sanner, M.1    Slotine, J.2
  • 107
    • 0029408590 scopus 로고
    • Feedback linearization using neural networks
    • YESILDIREK, A., and LEWIS, F. L.: ‘Feedback linearization using neural networks’, Automatica, 1995, 31 (11), pp. 1659-64
    • (1995) Automatica , vol.31 , Issue.11 , pp. 1659-1664
    • Yesildirek, A.1    Lewis, F.L.2
  • 110
    • 0033317081 scopus 로고    scopus 로고
    • Nonlinear adaptive tracking using dynamical neural networks
    • PONZYAK, A., YU, W., SANCHEZ, E., and PEREZ, P.: ‘Nonlinear adaptive tracking using dynamical neural networks’, IEEE Transactions on Neural Networks, 1999, 10 (6), pp. 1402-11
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.6 , pp. 1402-1411
    • Ponzyak, A.1    Yu, W.2    Sanchez, E.3    Perez, P.4
  • 113
    • 0033890638 scopus 로고    scopus 로고
    • Stable adaptive control with recurrent networks
    • KULAWSKI, G., and BRDYS, M.: ‘Stable adaptive control with recurrent networks’, Automatica, 2000, 36 (1), pp. 5-22
    • (2000) Automatica , vol.36 , Issue.1 , pp. 5-22
    • Kulawski, G.1    Brdys, M.2
  • 114
    • 0027556823 scopus 로고
    • Control of non-linear dynamical systems using neural networks: Part I, controlability and stabilization
    • LEVIN, A., and NARENDRA, K.: ‘Control of non-linear dynamical systems using neural networks: part I, controlability and stabilization’, IEEE Transactions on Neural Networks, 1993, 4 (2), pp. 192-206
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.2 , pp. 192-206
    • Levin, A.1    Narendra, K.2
  • 115
    • 0029754433 scopus 로고    scopus 로고
    • Control of non-linear dynamical systems using neural networks: Part II, observability, identification and control
    • LEVIN, A., and NARENDRA, K.: ‘Control of non-linear dynamical systems using neural networks: part II, observability, identification and control’, IEEE Transactions on Neural Networks, 1996, 7 (1), pp. 30-42
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 30-42
    • Levin, A.1    Narendra, K.2
  • 116
    • 0029308580 scopus 로고
    • Adaptive control of a class of non-linear discrete time systems using neural networks
    • CHEN, F., and KHALIL, H.: ‘Adaptive control of a class of non-linear discrete time systems using neural networks’, IEEE Transactions on Automatic Control, 1995, 40 (5), pp. 791-801
    • (1995) IEEE Transactions on Automatic Control , vol.40 , Issue.5 , pp. 791-801
    • Chen, F.1    Khalil, H.2
  • 117
    • 0030148040 scopus 로고    scopus 로고
    • Discrete time model reference adaptive control of non-linear dynamical systems using neural networks
    • JAGANNATHAN, S., LEWIS, F., and PASTRAVANU, O.: ‘Discrete time model reference adaptive control of non-linear dynamical systems using neural networks’, International Journal of Control, 1996, 64 (2), pp. 107-30
    • (1996) International Journal of Control , vol.64 , Issue.2 , pp. 107-130
    • Jagannathan, S.1    Lewis, F.2    Pastravanu, O.3
  • 119
    • 0031170885 scopus 로고    scopus 로고
    • NLq theory: A neural control framework with global asymptotic stability criteria
    • SUYKENS, K., DeMOOR, B., and VANDEWALLW, J.: ‘NLq theory: a neural control framework with global asymptotic stability criteria’, Neural Networks, 1997, 10, pp. 615-37
    • (1997) Neural Networks , vol.10 , pp. 615-637
    • Suykens, K.1    Demoor, B.2    Vandewallw, J.3
  • 121
    • 0344927103 scopus 로고    scopus 로고
    • Genetic assisted selection of RBF model structures for greenhouse inside air temperature prediction
    • Istanbul, Turkey, June
    • FERREIRA, P. M., RUANO, A. E., and FONSECA, C. M.: ‘Genetic assisted selection of RBF model structures for greenhouse inside air temperature prediction’. IEEE conference on Control applications, Istanbul, Turkey, June 2003
    • (2003) IEEE conference on Control applications
    • Ferreira, P.M.1    Ruano, A.E.2    Fonseca, C.M.3
  • 122
    • 84879203441 scopus 로고    scopus 로고
    • Design and implementation of a real-time data acquisition system for the identification of dynamic temperature models in a hydroponic greenhouse
    • FERREIRA, P. M., FARIA, E. A., and RUANO, A. E.: ‘Design and implementation of a real-time data acquisition system for the identification of dynamic temperature models in a hydroponic greenhouse’, Acta Horticulturae, 2000, 519, pp. 191-7
    • (2000) Acta Horticulturae , vol.519 , pp. 191-197
    • Ferreira, P.M.1    Faria, E.A.2    Ruano, A.E.3
  • 124
    • 85014179779 scopus 로고    scopus 로고
    • Comparison of on-line learning algorithms for radial basis function models in greenhouse environmental control
    • (Controlo 2000), Guimarães, Portugal
    • FERREIRA, P. M., FARIA, E. A., and RUANO, A. E.: ‘Comparison of on-line learning algorithms for radial basis function models in greenhouse environmental control’. Proceedings of fourth Portuguese conference on Automatic control (Controlo 2000), Guimarães, Portugal, 2000
    • (2000) Proceedings of fourth Portuguese conference on Automatic control
    • Ferreira, P.M.1    Faria, E.A.2    Ruano, A.E.3
  • 130
    • 84958962366 scopus 로고    scopus 로고
    • On the performance assessment and comparison of stochastic multiobjective optimizers
    • Lecture Notes in Computer Science, 1141, Springer-Verlag, Berlin, Germany
    • FONSECA, C. M., and FLEMING, P. J.: ‘On the performance assessment and comparison of stochastic multiobjective optimizers’, Parallel Problem Solving from Nature - PPSN IV, Lecture Notes in Computer Science, 1141, Springer-Verlag, Berlin, Germany, 1996, pp. 584-93
    • (1996) Parallel Problem Solving from Nature - PPSN IV , pp. 584-593
    • Fonseca, C.M.1    Fleming, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.